
Folk Memory
A Minimalist Architecture for Adaptive
Federation of Object Servers

Ward Cunningham
June 20, 1997

This memo describes an adaptive architecture for federating peer object servers. Both the
architecture and its implementations are called Folk Memory. This term alludes to the
social process by which folk tales or folk songs are remembered and propagated within a
culture. The folk servers, like people within a culture, share their interests with their
associates and associate with those who share their interests. Folk servers stream domain
objects over simultainous connections to peers dynamically chosen to shorten access to
the authoritative sources for objects deemed interesting. Conflicts are resolved by a
collective process that may not settle to identical state in all parts of a network. Folk
memory favors scaleability and robustness over accuracy and determinism.

Principles
While listening to papers presented at COOTS’97 I became frustrated that so many
requirements were heaped on every distributed object architecture. Surely there is a class
of application where delay and uncertainty are acceptable or even desirable. What would
be a suitable infrastructure for these applications? I doodled, sketched and crumpled.
Then, during the final panel discussion, my thoughts for an alternative came together with
these eight principles:

• A server contains pools of interconnected objects.
• Connecting to peer server initiates bi-directional stream of objects without query.
• Inflow suggests schedule for outflow.
• Objects carry trail to more authoritative servers.
• Update implies elevation of authority and therefore trail reversal.
• Trail reversal guides the establishment of new connections.
• Transportation of objects is by breadth first traversal pruned by trail length.
• Pruning is by substitution of inert proxy (a.k.a. Ellipsis).

Concepts
Here I elaborate the above principles by describing the purpose or responsibility of
various conceptual components. These collectively form a distributed object
infrastructure upon which high-volume, world-wide, non-stop and incremental
applications can be built.

Object: The unit of communication between servers. Objects may refer to other objects,
but those references may be temporarily elided as a consequence of transmission. A
transmitted copy of an object is a less authoritative vestige of its source.

Trail: Objects maintain a trail that records a sequence of servers through which the object
has been copied. The root of a trail is presumed to be the server hosting the most
authoritative copy of an object, the primary authority.

Ellipsis: A mark that stands in place of a reference within an object on a server. Unlike a
proxy, the ellipsis offers no access to the object it replaces. An ellipsis will
spontaneously transform into a native reference should any vestige of the elided object
appear on the server. The transformation event can trigger computation within an object
or its observers.

Promotion: An object may spontaneously raise its own authority, perhaps due to locally
acquired new state that supersedes that of the source copy. Promotion initiates a process
of trail reversal where the revised object is distributed to previously authoritative servers.
Promotion is to prime authority, and is quick. Shorn trails then persist only as required
by connection and distribution heuristics.

Resolution: An object can be assembled from various sources of various and changing
authority. The resolution process guarantees that only one copy of an object will exist
per server, and that updates to its non-reference state is atomic. {Should the object
participate in its own resolution?} Identity confusion is possible, thought unlikely,
among objects of the same kind.

Server: A server hosts objects of various authority and shares them through bi-
directional connections with other peer servers. Servers have a network identity which is
recorded in the trail of objects it distributes. Peers may connect with a server in the hope
of recovering more authoritative information about an object, for example: revised state or
copies of elided references. A server does not respond to queries. Rather, it responds to a
connection by sending copies of objects by a schedule of its own devising.

Connection: Servers establish bi-directional symmetrical point-to-point connections for
the purpose of sharing objects. A server simultaneously distributes outbound objects and
collects inbound objects. A server may terminate a connection at any time and will often
do so to conserve system and CPU resources or because of apparent blockage or other
failure of the channel. Heuristics may depend on knowing which objects have been
collected from which channels (hence pools).

Extinction: An object that is no longer distributed with primary authority is in danger of
extinction. A server has some obligation to continue distributing objects for which it is the

prime authority. Should such a server fail, an object may still be saved by promotion on
another server. An object cannot be deleted--only forgotten which may lead to eventual
extinction.

Transmission: Objects are transmitted using an open-loop wire protocol on top of a
stream protocol such as tcp/ip. Class definitions (bytecodes) are transmitted with objects
unless they are known to already exist on the receiving end. {Or should the receiver
request missing classes thus introducing closed-loop behavior?}

Heuristics
The architecture includes several heuristics for allocating limited resources. I think it likely
that simple heuristics can provide robust and effective total system behavior, though the
actual selection of these heuristics may require substantial analysis or experimentation.

Connection Heuristic: Chooses when to open, accept and close connections. Guided
largely by “trail climbing” of interesting objects, and average channel performance.
Allocates sockets, total bandwidth, and processing time devoted to transmission.

Distribution Heuristic: Chooses which objects, and in what order (schedule), to
distribute through each open channel. Guided by authority, apparent interest from hosted
application, and interest shown by peer servers. Allocates channel bandwidth to
individual objects. Strongly effects distribution latency.

Preservation Heuristic: Chooses which objects will be kept in the server. Guided by
authority, network and application interest, connection behavior and available space.
{Can a native reference be elided by this heuristic?}

Applications
Here I consider some applications that might find such a platform desirable. Each requires
a large, structured and continuously growing repository for information, much of which is
provided by the users themselves. I expect the ambiguity and non-determinism of the
platform to be reflected through the application to these users, who are well prepared to
deal with this reality.

Users would enter the system when they launch the application with its embedded
server and providing the freshly started server with the network name of a currently
running, but otherwise undistinguished, peer.

Many-User Game: A MUD or MOO could represent rooms, characters and possessions
as distributed objects. Connections would be made or broken as players inserted their
characters into new rooms. Possessions could be left or dragged along behind a character
by authority promotion as they are manipulated in each new environment. The natural

desire to avoid overcrowded rooms would prevent server traffic concentration. Since each
player contributes additional server capacity, their participation in very large games
would still be welcome.

Wiki-Nature Documents: Hyperlinked documents could span many subjects, authors
and usage patterns. Trail climbing would lead toward a distribution of objects on servers
congruent with the hypertext structure of the document. Agent mediated searches would
be breadth first from the point of initiation, and would yield continuously growing results
limited only by the initiator’s patience. {What about RecentChanges?}

Customer and Market Information: A world-wide securities sales force could track
market sectors and customer preferences in an environment where one records many facts
that are expected to obsolesce quickly.

Related Work
Tom Ray’s Digital Preserve is about as biological of a network as one can imagine. If
my use of statistical properties seems far fetched, then read what Tom is doing.
http://www.hip.atr.co.jp/~ray/pubs/reserves/reserves.html

Chip Morningstar’s company, Electric Communities, has developed Global
Communication Protocols which support secure, peer to peer networking. Chip’s game,
Habitat, is the sort I imagine deploying on folk memory.
http://www.communities.com/

Jim Waldo and others at Sun are building a layer on RMI called JavaSpaces which
offers a narrow interface through which applications pass objects. Their middleware need
not understand the application or the interfaces it might use. There are linkages to
security and transactions.
http://chatsubo.javasoft.com/

Cache-Only Memory Architectures (COMA) are the latest refinement of Attraction
Memory, first proposed in a rather complicated hierarchical and hardware assisted form.
Saulsbury, et.al. describe how to use standard MMUs to gain much of the same effect.
http://playground.sun.com/pub/S3.mp/simple-coma/isca-94/paper.html

Copyright (c) 1997
All Rights Reserved

