EPISODES:

A Pattern Language of Competitive Development

Part |

Ward Cunningham, ward@c2.com
IBM Consulting Group

Submitted to the Second International Conference on

Pattern Languages of Programs
Monticello, Illinois, 6-8 September, 1995

This pattern language describes a form of
software development appropriate for an
entrepreneurial organization. We assume the
entrepreneur to work in a small team of
bright and highly motivated people. We also
assume time to market is highly valued as it
often is where market windows close quickly
and development dollars are in short supply.
But, unlike some entrepreneurs, we also
place high value in being able to get a second
version out the door in a timely way; and a
third version; and an Nth version; many years
down the road. That is, we expect to be
successful and have every intention of
exploiting that success by continuing
development for as long as our customer has
desires.

These patterns describe how to develop
software. They could be fairly described as
process patterns though they don’t actually
describe a process the way a methodology
document might. Nor do they describe
designs or organizations a other patterns
have. Being patterns, they do describe
things, things that solve problems that occur
in the process. The things can be physical
like a document or meeting. Or they can be
mental like a commitment or state of mind.

Review Draft of August 6, 1995
Not for Publication

We are particularly interested in the
sequence of mental states that lead to
important decisions. We call the sequence
an episode. An episode builds toward a
climax where the decision is made. Before
the decision, we find facts, share opinions,
build concentration and generally prepare for
an event that cannot be known in advance.
After the climax, the decision is known, but
the episode continues. In the tail of an
episode we act on our decision, promulgate
it, follow it through to its consequences. We
also leave a trace of the episode behind in its
products. It is from this trace that we must
often pick up the pieces of thought in some
future episode.

We won't be so naive as to suggest that the
thoughts leading to a decision be written
down. These thoughts are too complex and
decisions too numerous for this to be
practical. What we do suggest is that hints
and pointers be placed in strategic locations
so that preparation for subsequent episodes
might go more smoothly. Of course they
won't. That's because each episode to touch
a given area does so with more expectation.
We only hope to rise to the occasion. We
will know that we have done so if our
episodes remain well shaped: not too heavy
on the front or the back, and not always
getting longer.

There is an old saying that laments, there is
never time to do it right but always time to
do it over. We take this to be a fact of
competitive life. We find ourselves unable
under competitive pressure to make the kind
of careful decisions we would like. These
patterns tell what decisions can be made, in
fact should be made, to maintain continuous
forward motion through itterative
development.

One does not have to compete to find these
patterns useful. The developments they
create are equally applicable for
entrepreneurial groups within large
organizations, or any other group that wants
to develop code quickly and indefinitely.

The language addresses a wide variety of
development issues. These have been
organized into topic areas that could be

Product Development

Product
Initiative Work
Queue

Marketing Report

Walkthrough

Management

Work
Queue

Completion
Headroom

Department

Implied

Requirement Work

Group

Work
Split

Agent

Development
Episode

Group

Informal
Labor
Plan

Comparable
Work

Individual

Figure 1. Map of EPISODE patterns and their relations.

Task

Process
Check

Investigation

described as top-down or chronological.
Don't think that any real development is so
structured or sequenced. In practice, these
patterns will be applied over and over, in or
out of order, sometimes by people whose job
description says they should do so, and
sometimes not. Chart 1. presents a map of
the language with patterns positioned by task
and agent. Here task implies the kind of
work being done while agent implies the
kind of person doing it. These aren’t to be
taken too seriously. Far more important are
the relationships between patterns. Patterns
are related when one leads to another. This
happens when the strong forces bearing on a
pattern are brought into balance its a
solution. Such resolutions of strong forces
inevitably expose weaker forces to which
attention should then be applied. It is this
shift of attention that we capture in the

Programming Operations

Recommitment

Meeting

Pair
Programming
Facilities

Motivated
Consolidation

Work
Integration

Development . Configuration
Build Script

Test
Repository

Build
Repository

Configuration
History

Requirements

Walkthrough Reference

Data
Technical
Memo
Crisis
Programming
Episode

Pair
Programming
Episode

Test
Browser

Programming

Architectural
Substitution

Episode Trans;?on
Mutation
Test

Mutation Fixture

History

Architectural

Context Spoof

Spike

Solution General

Solution

Work
Product

Field
Patch

Episode
Review
Literal

Stub

relations between patterns. These relations
turn a bunch of patterns into a pattern
language; a system that, like a natural
language, is employed without a great deal
of conscious thought.

1. Product

We pick up the development process
somewhere in the long middle, after the first
few versions have shipped and well before
the customers have lost interest in future
enhancements. We start with the longest
and largest of nested episodes, the Product
Initiative.

1.1 Product Initiative

Market Conditions or Operating Conditions
may indicate the need for increased or
modified product functionality. Or, an in
place Product Plan may call for specific
functionality on a given date. Anyway, it is
time to direct attention of multiple groups
toward specific product goals.

Everyone involved with a product
accumulates a wish-list of features and
functions they would add given half a
chance. A product designed to absorb an
ever increasing complement of features is at
particular risk of losing any sense of
coherence or direction.

Therefore: Articulate clearly the most
important direction for improvement of a
product. Expect all members of all involved
groups to be able to at least summarize the
initiative and defend its business rationale. A
new initiative need not align with previous
initiatives. There is no intention to retreat on
past accomplishments by withdrawing them
from the product or withholding proper

support. There is, however, every intention
of reducing or displacing less than relevant
thoughts in every mind within the initiative.

Expect an initiative to come from upper
management where responsibility for major
resource allocation rests. It is possible for a
product initiative to boil up from the
development ranks. What is important is
that everyone accept the initiative as the
direction of the moment, no matter how such
agreement may be reached.

A clear initiative will Imply Requirements
which should be talked through carefully in a
Marketing Walkthrough. Definite schedule
and resource goals further enhance the focus
of an initiative. Throughout the initiative,
management should track the Completion
Windows of Work Groups on each
requirement. Initiative slips result in over
allocation of attention to one subject at the
expense of good will and future initiatives. In
the worst case Implied Requirements may
need to be reviewed and possibly deferred or
discarded in an organization wide
Recommitment Meeting.

1.2 Market Walkthrough

A Product Initiative will be expressed in
market or business terms. A product is more
than a program or any other piece of
technology. Davidow makes this clear in his
book Marketing High-Technology. It is a
marketing function that makes one from the
other. And marketing must have good
contact with both sides of its operations, the
product's customers and the program's
developers. Likewise, development must
understand the customer needs served by an
initiative and have the confidence and
resources to peruse market questions as they
arise.

Therefore: Begin every initiative with a
walkthrough of program and product
concepts involving most of the development
and marketing staffs. Understand an
initiative from the buyer's and user's
perspective and from developments point of
view too. Should an initiative come from or
involve contract terms, now is a good time
to review them. Finally, all should agree on
basic terminology, such as that used as
Implied Requirements.

Example:

A trading software company is responding
to growing fear of derivative contracts by
adding improved pricing models and
related analytic. The marketing
department has selected key customers with
derivative portfolios and a willingness to
work with development. In a market
walkthrough the company president
outlines changes in the derivatives market,
the New York region customer
representative summarizes the newest
pricing models popular on “the street”,
and the staff domain specialist outlines a
vision for incorporating similar function in
the companies product. The walkthrough
ends with a long question and answer
period in which marketing and development
begin to match customer needs with
implementation possibilities.

1.3 Implied Requirement

A Product Initiative has identified the
direction for further development and a
Marketing Walkthrough has explored the
customer motivation and developmental
possibilities behind it. We expect positions
and attitudes to be understood but have yet
to make any commitments beyond everyone's

general commitment to do a good job by the
company.

A commitment implies an agreement
between people. Development commitments
generally obligate developers to meet some
customer need in a timely and satisfactory
way. The tension here is to define a need in
sufficient detail that commitments have
meaning without exhausting up-front analysis
or over constraining a solution.

Therefore: Select and name chunks of
functionality. Use names that would have
meaning to customers consistent with the
Product Initiative. Allow these names to
imply customer requirements without
actually enumerating requirements in the
traditional sense.

Examples:

Year-End Tax Reports
Dollar Denominated Japanese Bonds
High-Quality Printing
Disconnected Operation on Lap-Tops

These names will fill in the blank in the
recurring questions like: Who's handling the
programming (or specification, or customer
contact, or manual update, or release notes)
for

2. Development

The following patterns generate
development team activity leading to
frequent and regular releases of
increasingly functional programs. An
important idea is the simultaneous
development of requirements, specification,
design and implementation. Where these
responsibilities fall to single individuals,
they are assumed to be able to wear the

appropriate hat at the appropriate time.
Similarly, should different people fill each
role, they are assumed to be able to
coordinate their activities such that each is
productive and benefits from the other's
work.

The patterns also generate a schedule of
sorts while preserving considerable latitude
to do what makes the most sense at the
moment. Our general strategy is to develop
to a few fixed target dates. When a delivery
date arrives, we would like to look back over
the development period and say with
confidence that we used every available
minute wisely.

2.1 Work Queue

Implied Requirements suggest deliverable
program enhancements which will have
various necessities, dependencies, risks and
rewards. Deliverables may be ill-defined
being represented more by a vision or desire
than anything concrete or measurable.

If we were to work up a conventional
schedule we would probably begin with a
block of requirements analysis for each item.
From these would be hung blocks of
specification, design, implementation and
eventually integration and testing. Add to
this some wild guesses and a few ordering
constraints and, presto, thirty feet of diagram
saying what will be finished when and by
whom. Such a document takes on a life of
its own striking fear in developer's hearts and
generally distracting everyone else from the
real scheduling task which is to get better
input, not larger output.

Therefore: Produce a schedule with less

output than you have input. Use the list of
Implied Requirements (really just names) as
a starting point and order them into a likely

implementation order favoring the more
urgent or higher priority items. When work
can be factored from two or more entries, go
ahead and do so giving the common element
a name that establishes its worth and implies
its implementation precedence.

Example:

1. Settlement-Date Positions

2. Settlement-Date Based Tax Reports

3 Trade vs. Settlement Accounting
Preference by Portfolio

Be prepared to reorder this list as unforeseen
interactions surface or business realities
demand new priorities. Remove work from
the list as it is completed. Observed defects
is not enough to return completed work to
the list. However, independently scheduled
repair activity may uncover omissions that
are more appropriately removed from defect
tracking and scheduled in competition with
all of the other work on the Work Queue.

2.2 Work Group

We have a Work Queue that describes
Product Initiative relevant work, is ordered
by urgency, and that shifts up as completed
work is removed from near the top. We
must now allocate staff without
overwhelming or under-utilizing any
individual.

Therefore: Allocate staff to roughly two
month's worth of work at the head of the
Work Queue. Seek their commitment to
work together as needed to understand the
real and Implied Requirements, develop
suitable specifications, complete or extend a
design, assemble tests and implement all
aspects of the deliverable. Expect individuals
to apply themselves to their most urgent
assigned work. Allow some latitude to

compensate for impossible to forecast
dependencies between projects and
individuals, Expect the work of any given
item to be performed with the usual rise and
fall of concentration revolving around a burst
of decision making that marks the center of a
Development Episode.

2.3 Work Queue Report

With the usual mix of analysts, designers and
implementers, one can assume that a
proportional amount of analysis, design and
implementation gets done every week. This
can be confirmed in a weekly status meeting
where every attendee is given five minutes to
describe his or her specialty. However, it can
be amazingly difficult to detect a slipping
schedule in the status meeting venue.

Therefore: Collect status in regular personal
interviews conducted at weekly intervals.
Solicit days of remaining effort estimates
using contrasts with Comparable Work.

Example Work Queue Report:

Example:

"I put two full days into the new tax
calculations, and one day with Joe on his
u/i1."

"How many uninterrupted days do you
think you need to finish the calculations?"

"Oh, say two, It's no different from the
accruals."

"And, working with Joe?"

"Well, we didn't get to the real work. 1
had three down last week? Must still be
three days."

Use these estimates along with individual
dilution factors (how many uninterrupted
days of development does the individual have
access to a week) to predict elapsed days to
completion for each assigned deliverable.
Compute and publish Completion Headroom
from this data. Include a cover page with a
few sentences explaining numbers that might
have shifted in an interesting way.

2.4 Comparable Work

Developers are surprisingly bad estimators
when it comes to dates. On the other hand,
they have a good memory of what
circumstances lead to what problems on just
about every project they ever worked on and
have a sixth sense for the same

Work in Progress Uninterrupted Days to Completion | Earliest | Head
(ordered by priority) Sue | Bill | Joe | Kay | Ed | Ray | Possible | Room
availability: | 60% | 70% | 25% | 70% | 10% | 75% Finish
Settlement-Date Positions 3 2 June 5 12
Settlement-Date Tax Reports 2 2 June 8 9
Trade vs. Settle Preferences 1 4 June 7 10
etc. 5 5 June 21 8
etc. 9 3 June 25 4

circumstances in a new project.

Therefore: Let developers estimate effort by
selecting comparable work. A job that is 2/3
as complex as some previous job will
probably take about 2/3 as long.
Comparable estimates are usually accurate
even for ill-defined projects unless there is
hidden complexity not taken into account
when selecting comparable. Hidden
complexity usually shows within a few days
of actually starting work. It's OK to
challenge an estimate that is not taken
seriously but don't try to hold developers to
last week's estimate when they've uncovered
hidden complexity. Take heart, there is such
a thing as hidden simplicity that does surface
on occasion.

As an aid to memory, record uninterrupted
days applied to current efforts as was done in
Figure 3. This data will be a handy reference
when today's projects become tomorrow's
comparable. Do not expect a week on the
job to yield more than two or three full days
of development. Also, don't try to use this
data for performance evaluation. To do so
will destroy the frank relationship required
for good estimating. Besides, it's not clear
whether bigger or smaller numbers indicate
improved performance. It will be necessary
to prorate accumulated effort data should a
project undergo a Work Split. Some ratio
will suggest itself. Just don't count days
twice.

2.5 Completion Headroom

Every project must commit to delivery on a
few hard and fast dates. This is actually
fortunate because it is about the only way to
get out of work that is going poorly. A
Work Split provides the graceful exit by
allowing one to defer the portion of work

that is not understood or going poorly while
saving the part that does work or will save
face. A Work Split does require some
advance notice since some portion of the
work must still be completed before
deadline.

Therefore: Project Work Group completion
dates from remaining effort estimates in the
Work Queue Report. Take the largest of the
earliest completion dates for each work
group and compare it to any hard delivery
date that may apply. The difference is your
Completion Headroom. Headroom will
often jitter plus or minus a day or two from
week to week. But steady evaporation of
headroom for any Work Group is a sure
indicator for management attention. You
have at your disposal reordering the Work
Queue, possibly deferring whole items to
later release, the Work Split already
mentioned, or the public embarrassment of a
Recommitment Meeting.

2.6 Development Episode

Members of a Work Group have been
selected based on needs inferred from the
Implied Requirement. Each member brings
specific skills which will be important at
some point in the development. For this we
can be thankful. However, if we
overemphasize a member’s specific strength,
we diminish everyone's general abilities,
unnecessarily narrow the members focus to
applying just that specialty, risk creating
ambiguity as to who is responsible for non-
specialized tasks, and discourage the learning
of new skills.

Therefore: Approach all development as a
group activity as if no one had anything else
to do. Expect the activity to follow the usual
course of an episode where energy builds to

7

a decision-making climax and then dissipates.
At the height of the episode, purpose should
be clear, terminology well understood,
knowns well explored and unknowns
identified. It is at exactly this point that
individual strengths merge into a sort of
common consciousness. Landmark decisions
come easy. Breakthroughs are common. A
creative act will have been shared.

Besides yielding better decisions, the
collective episode has very positive effects
on the participants. Looking back, people
often have trouble identifying the actual
source of key ideas. Non-specialists gain
invaluable insight into the thought processes
of the specialist. A specialty is demystified,
shared, spread throughout the group. A
master of a specialty will realize that this
sharing will not diminish one's own status
within the group. As insight wells up in the
master, he will delay slightly, expecting
others to be close to the same insight, and
knowing that their actual recognition
experience will be of tremendous value to
them and a small loss to himself. Seymour
Papert called this an "Ah Ha" and
admonished instructors not to "Steal the Ah
Ha" (Mindstorms).

2.7 Informal Labor Plan

The Development Episode presents an ideal
that must be worked into the lives of people
trying to get a big job done quickly.
Developers will often find themselves
obligated to more than one in-progress
Development Episode at a time. The Work
Queue offers one prioritization, though one
that ignores the many small tradeoffs
possible when the work is at hand.

Therefore: Let individuals devise their own
short-term plans. Accept that much of the

group activity implied in a Development
Episode will take place pair-wise between
group members that find the time to tackle
some issue together. Avoid the temptation to
call a meeting where a developmental climax
is intended to happen. It won't. Instead let
individuals express interests and make
commitments to each other. And let them
revise these intentions on a moment's notice
when the energy of some episode reaches an
irresistible level.

A Development Episode is actually
composed of a series of Programming
Episodes, some of which must take place in
(at least) pairs if any approximation of group
consciousness is to form. An individual's
labor plan is his tool to make these
connections happen. Pair Programming
Facilities are configurations of the physical
environment that can reduce this planning to
an occasional promise in the hallway.

2.8 Work Split

A Work Group commits to resolve and
deliver Implied Requirements in the most
timely and satisfactory way they can find.
They are not committed to specific dates.
But they do have an obligation to make their
efforts visible through what becomes the
ultimate trouble signal, low Completion
Headroom. Headroom disappears when
developmental activities fail to match those
of Comparable Work. A common problem is
the well-meaning escalation of requirements
by people too close to a problem.

Therefore: Divide a task into an urgent and
deferred component such that no more than
half of the developmental work is in the
urgent half. Defer more if required to
acquire sufficient Completion Headroom.
Defer analysis and design of parts that won’t

8

be implemented. This advise runs counter to
conventional wisdom. Often a split is just a
way to get back to the basic work that had
been originally planned. Trust Architectural
Substitution to cover for omissions and
inconveniences caused by incomplete "up-
front" work. Both halves of the split will
appear in the Work Queue with distinctly
different urgency.

2.9 Recommitment Meeting

Work Splits offer a mechanism to keep to a
schedule that can be initiated from within a
development group. If a Product Initiative is
in jeprody because Implied Requirements
cannot be met through schedule and Work
Queue adjustments, then it is unlikely any
other development initiated activity will help.
Management up to at least the level that
began the initiative will suddenly take
interest in all circumstances leading up to the
current situation. Some of this is natural and
appropriate. But it won't be a time of high
productivity and shouldn't be allowed to
continue too long.

Therefore: Assemble a meeting of interested
management and key development people.
Allow the meeting to review history until all
present agree simple adjustments (like
working weekends, or adding staff) won't
help. Eventually a solution appears, usually
expressed as a question of the form: What is
the least amount of work required to do X?
X is one person's idea of the most important
part of the initiative. The question should be
answered quickly and confidently by
consulting a recent Work Queue Report.
The process may repeat for plans Y and Z.
Ultimately a plan will be selected. Then the
remainder of the meeting is devoted to
talking through implications of the decision

and getting all parties commitment to the
new plan and/or schedule.

This, of course, is another form of episode.
The decisions are ones of allocating business
resources and belong in upper management.
However, all present can contribute, and
should do so in a frank, honest, non-
defensive and constructive way.

3. Programming

Programming is the act of making and
encoding decisions about future behavior.
Encoding requires the careful consideration
of the basis and consequence of every
decision. Often decisions are found
incomplete and new questions raised. In
this section we consider decision making in
the presence of incomplete, obscure or
questionable facts. We include patterns for
the assembling of knowledge in artifacts and
individuals, and for limiting decision
making when knowledge requirements
exceed that immediately available.

3.1 Requirement
Walkthrough

Not all members of a Work Group will start
to consider the Implied Requirements of a
piece of work at the same time.
Unpredictable circumstances lead individuals
to work through their portions of the Work
Queue at different rates. Although any
members efforts should be considered a
contribution, the first to the problem may
seem to others to have inappropriate
influence over decisions effecting others.

Therefore: Assemble the whole Work
Group as soon as one member begins to
consider any part of the Implied
Requirement. Consider the expressed needs
and desires, the individuals who hold them,
and likely strategies to meet them. This is
the beginning of the Development Episode
and is a good time to sketch the first
Informal Work Plan. This can lead to
adjustments in group membership. It is also
a good place for CRC level design.

3.2 Technical Memo

A Development Episode may intertwine with
other activities demanding the attention of
the Work Group. Further, some concepts
may require quite contemplation to absorb or
may involve sufficient detail that they cannot
be recalled without aid.

Therefore: Maintain a series of page-
printable technical memoranda addressing
subjects not easily expressed in the program
under development. Focus each memo on a
single subject and keep the text short and to
the point. Carefully selected and well
written memos can easily substitute for
traditional comprehensive design
documentation. The latter rarely shines
except in isolated spots. Elevate those spots
to technical memos and forget about the rest.

3.3 Reference Data

The Requirement Walkthrough will identify
relevant information sources which will be
retrieved, reviewed and absorbed as the
Development Episode begins. The various
data may require transformations before they
are easily interpretable. Such activities build
the awareness that makes for the intensity
characteristic of a decision making climax.

However, after a climax, the focus is on the
recent decisions and their implications; the
data and processing that contributed to the
insights are easily forgotten.

Therefore: Collect examples, test cases and
customer data as machine readable examples.
Use a spread-sheet program to organize and
transform the data as appropriate. Leave
notes and observations as text annotations to
the sheets so that key observations won't be
forgotten. Keep this handy throughout
development and make sure it is easily
imported into the development environment
when useful. Check the program against this
data throughout development, possibly by
incorporating it in Test Suites developed for
the application.

3.4 Programming Episode

Programming is the act of deciding now
what will happen in the future. A
programming language offers an
operationally precise way to encode
decisions through a process called simply
coding. Programmers reason about future
behavior by interpreting previously coded
decisions and integrating these with their
own decisions and their interpretations of
other sources like Technical Memos and
domain experts. The depth, quality and
value of programming decisions will be
limited by the programmers ability to
concentrate.

Therefore: Develop a program in discrete
episodes. Select appropriate deliverables for
an episode and commit sufficient mind share
to deliver them. Be aware of the rise in
concentration as the episode progresses.
Consider each source (above) and
consciously include or exclude its
recommendations.

10

Use the fear that often accompanies a
decision not-yet-made as a motivation. Try
to compare your position within an episode
to similar points in previously successful
episodes.

Example:

“I feel like we’ve been around twice now
on the possible ways we can bind the six
terms of this bond analytic to the four
calculation classes we have in our library.”

“Yea, right now I'd be happy if we could
place the four primary terms, look at the
error cases, and see if that gives us a hint
how to proceed after lunch.”

Push for the decisions that can be made.
Don’t abandon an episode; that will leave
you feeling defeated and unable to achieve
even the same level of concentration at a
future time. Make the decisions that seem
possible. Code the decisions. Then review
the code to be sure that the extent of your
decisions and your confidence in them is
apparent in the code. Coding occurs on the
down-hill side of a programming episode.
Coding is the most direct way to promulgate
programming decisions.

o

AN

This document is available in the

’Q‘IJQ Portland Pattern Repository.
TN http://c2.com/ppr/

11

Appendix A: Supplemental Patterns in Brief
Space does not allow for the inclusion of all EPISODE patterns. This table lists patterns that will be included in
part II of the EPISODES pattern language

Pattern

Solution

Pair Programming
Episode

Add reflective articulation, subliminal Process Check, pattern
propagation, search space pruning and general good will to the
Programming Episode.

Pair Programming
Facilities

Arrange the furniture. Adjust the fonts. Stretch the cables. Use a
private office with an open door and two chairs. Abandon
authorship/ownership.

Crisis Programming
Episode

Assemble a possibly larger than necessary Work Group. Let members
drop off as a solution becomes clear.

Investigation Use inspection and cross-referencing tools to assemble a mental model

Context of the as-is program

Spike Solution Patch, debug and/or code a minimal solution of representative function
in the task. Code protocol before variables using Literal Stubs to make
progress.

Literal Stub Return the value that you know you will eventually compute in the
current Investigation Context.

Generalized Code for skipped/missing parts of the solution. Stub or

Solution Uninterpretablylmplement still remaining function.

Process Check What are you working on? Why are you working on that? Don't work
on that anymore.

Architectural Create a new architecture for function that does not fit well on existing

Substitution architecture. Develop that architecture in isolation if necessary to

understand mechanisms required by the new function.

Architectural Spoof

Add sufficient compatibility protocol to an obsolete architecture and/or
it's substitution so that both can coexist. Reuse names so that
Modification Lists will include both architectures.

Motivated
Consolidation

Clean only that part of the architecture necessary to support a motivated
(funded) set of functionality.

Episode Review

Examine the Episode Product from a solution-sharing rather than a
problem-solving perspective.

12

Pattern Solution

Work Product Create a transmittable, integrateable summary of changes necessary to
duplicate the solution.

Field Patch Bundle the Work Product in a form that it can be efficiently distributed

to field locations in an emergency. Integrate this patches as you would
any other Work Product. Patches can induce Sweep Mutations, but
these must be considered part of one continuous development. Where
truly one-off modifications are required, use a subclass and script it out
of standard configurations.

Sweep Mutation

Sweeping is the process of traversing clusters of application data as it is
exported from or imported to the runtime memory environment. Expect
to find any possible version of any object in the external world. Mutate
these to the most current form as they are read. Write the most current
form as new or modified objects are written.

Mutation History Sweep Mutation requires that we remain familiar with all previous
versions of any given object. Keep that history in an "evaluatable
comment" in the mutating sweep method of the effected classes.

Work Integration Assemble recent Work Products. Check for completeness and conflicts.
Edit as appropriate.

Developmental Reassemble an image from complete sources. Run regression tests and

Build save results in a distributible image. Post this image to the Build
Repository with the Work Products uniquely included.

Mechanically assemble Episode Products. Supervise conflict resolution.

Build Repository Collect Developmental Builds with auxiliary information used to
construct and test them. Cull non-released builds when they are
covered by a release and all open forks have been closed.

Test Suite Collect tests from Reference Data, Programming Episodes and normal

Repository test development. Distribute tests to Programming Episodes and

Developmental Builds. Preserve and protect as if it were code. Make
flexibility.

Test Suite Browser

Drill down from build statistics to suites to cases to variables to
inspectors and debuggers. Import, enter, and compute expected values.
Visualize failure distributions (systematic vs. sporadic).

13

Pattern

Solution

Test Fixture

Construct or retrieve objects suitable for performing a test. If a test
case is an interrogation, then the fixture is the interrogator who calls up
the interrogated and starts asking questions. Long term fixture
maintenance is a development responsibility. Make sure the fixtures
appear in a Development Episode’s Investigation Context.

Configuration Develop in a full configuration. Deploy by applying scripts that remove
Script or disable unwanted function.

Configuration Accumulate a history of Configuration Scripts and Field Patches applied
History to a particular product. Make sure the history is available in Crisis

Programming Episodes so that debuggable versions of faulty
configurations can be reconstructed.

14

