Finding Objects:

What to do when the Cards don't work.

Ward Cunningham
Wyatt Software

Good decompositions of complex problems can be found by allocating responsibilites among
collaborating objects. We have presented an informal method for making such allocations using
ordinary index cards (1). A key part of the method is the assesment of goodness made by working
through computational scenarios using cards as props and collegues as judges. This process
depends on their being sufficient collective experience within the group to actually solve the
problem. First time object-programmers are advised to adjust the scope of the problem or the
breath of the team to insure this condition.

In practical programming situations such adjustments are not always possible. At timesagroup is
simply not prepaired to solve a problem. This becomes apparent when scenario judges find they
have no opinion. No opinlon being counter to the norm and usually accompanied by an uneasy
feeling in the stomach. Continued work with index cards becomes uninformed speculation.

Cards don't dways work. Cards do correctly identify where experience isin short supply, but,
they don't always lead to good decompositions when that happens. An experienced programmer
will take heart in knowing that even poor decompositions can be made to work and that he will
soon have a great deal of experience. My advice then is to forge ahead with any objects. When
simply quiting is not an alternative take whatever you have and proceed. Programming will reveal
its strenghts and weaknesses.

One can expect a poor choice of objects to slow development, enlarge code and limit reuse. These
are all signals that further innovation is required. The inventive programmer will set upon such
programs with the hope of finding objects. In particular, he will search for the missing objects.
Once identified, they can be inserted into the otherwise deficient program with modest effort and
dramatic result.

| would not make this suggestion had object-oriented programming not been accompanied by
truly outstanding programming environments. The best offer sufficient mechanism to recover
from almost any organizational mistake, a property we have found possible to extend into
deployment.

Organizational mistakes should not be confused with program errors. The latter
are failures to meet specifications, the former only missed opportunities for
efficiency. Organizational mistakes have a substantial cost that must be figured
into the economics of program development. They slow development, enlarge
code and limit reuse. All all signs of missing objects.



