
On the Division of Responsibility
for Refreshing a Cell

Technical Memorandum #90-3
Ward Cunningham
April 23, 1990

This report traces the computation of a single value to appear in a single cell of a report. Were
the report implemented as a spreadsheet, the formula associated with the cell would perform the
computation, possibly aided by additional macros and worksheets. In fact, the calculation is
spread over nearly a dozen Smalltalk objects that cooperate to perform the calculation in an
organized and efficient way. Each object's contribution is explained. Further, we provide
justification for this fragmentation by citing for each object related objects that can be substituted
into the framework to produce related computations.

The computation in question, yield to maturity of a GIC contract, has proven to be one of the
most involved in our development and testing. Programmed in Excel the calculation takes tens
of seconds to complete. Smalltalk duplicates the calculation in a fraction of a second while
employing more objects and protocols than any other instrument. What do those objects do?
Their responsibilities fall into these four general categories.

Class Responsibility

CellPane User interface
ReportBrowser

PositionReport Report specification
AveragedColumn
FormattedRows

DatedPosition Calculation optimization
GI Ccalculator

CompoundBalance Calculation implementation
YieldDaemon
CashFlow

This table was generated by stopping the computation and tracing through the suspended
message sends. The same traceback appears below. Each entry includes the specific message
received and a discussion of how it is handled. Our trace begins with the display of the report
window. Five columns have already appeared. The sixth column, Yield, has reached a GIC on
line two.

CellPane refreshCell: 6 @ 2

A CellPane is a kind of pane that fills its part of a window with tabular data. We
pick up the calculation with it refreshing column 6, row 2.

ReportBrowser cellAt: 6 @ 2

The pane queries its model, a browser, for the string contents of the cell. This
browser can adjust the columns of a user-defined report. Calculation, however, is
delegated to the report.

PositionReport cellAt: 6 @ 2

Reports retrieve rows (in this case positions) and view them through the columns
that they store.

AveragedColumn formattedAt: 2

A column can retrieve, cache and format a quantity from a row. This variant also
reports a (possibly weighted) average for totals and subtotals. But, first the
column gives the rows a chance to intervene in the retrieval.

FormattedRows column: aColumn at: 2

A FormattedRows is a kind of Collection that can permute row indices when
required by row sorting or subtotaling. Retrieval continues with the permuted
index (unchanged in this example).

AveragedColumn valueAt: 2

The column, having failed to find a cached value for row 2, sends its stored
selector (#yield) to the row.

DatedPosition yield

Now calculation begins in earnest. The row, a DatedPosition, creates a calculator
which it will cache to speed subsequent queries.

GicCalculator yield

Bond calculators can answer most queries by plugging instrument related
quantities (dates, rates, etc.) into formulas. The GIC calculator, however, must
actually run out all future cash flows from stored schedules and future-dated
transactions. This comes down to finding the daily balance from here to maturity.

CompoundBalance yieldOn: $5,666,199.37

Each GIC interest calculation method has its own class in the heirarchy of balance
calculators. This one makes payments based on the "compound" calculation
method. A Balance can answer simple questions regarding interest or principal
directly. More complicated calculations are delegated to daemons that run in sync
with the balance.

YieldDaemon yield

The YieldDaemon, in particular, captures data from balance events (deposits,
payments, etc.) and stuffs it (along with the initial balance) into a generalized
CashFlow.

CashFlow rateOfReturn

A CashFlow is optimized for computing its own present value, the inner loop of
the rate of return calculation. This CashFlow and the YieldDaemon that created it
are discarded once the result is safely cached in the GICCalculator.

The calculation unwinds. The value passed back will be manipulated as it goes, first converted
to a string of characters and then finally to a pattern of bits on the display screen. Again, each
object is prepared to do its part.

Once an object has completed a task it stands ready to perform another. Often objects will cache
the results they produce so that they can be delivered immediately when needed again. Objects
caching obsolete values may be replaced by fresh recruits, ready to repeat the calculation. This
works only as long as all data within an object age at the same rate. This has an obvious impact
on the division of responsibilities as can be observed in the following table. Lifetimes range
from indefinitely long to as short as the calculation. Others match the lifetime of a window or
only last between window updates.

Object Responsibility Lifetime

CellPane Fill screen space Window

ReportBrowser Examine Reports Window

PositionReport Retrieve & describe Indefinite
Positions

AveragedColumn Format, aggregate Indefinite
& cache values

FormattedRows Permute rows Update

DatedPosition Represent a pos- Update
ition on a date

GICCalculator Compute statistics Update

 CompoundBalance Compute payments Update

YieldDaemon Select & organize Calculation data

CashFlow Compute PV & ROR Calculation

Lifetime variations motivate the separation of large objects into smaller ones. Other sources of
variation have contributed to the present decomposition of the yield calculation. Whenever
variation on a theme is present, Smalltalk programmers like to capture that variation into a
hierarchy of related objects with common behavior factored to the top. We illustrate this
influence by listing objects related to, but not involved in, the yield calculation we traced.

 Related
Object Objects Variation

CellPane TextPane Display
FieldPane

ReportBrowser TransactionBrowser Interaction GraphBrowser

PositionReport ActivityReport Query
PerformanceReport

AveragedColumn TotaledColumn Aggregation
ProportionedColumn

FormattedRows Array Indexing
OrderedCollection

DatedPosition DatedCashposition Position
DeferredCashPosition

GICCalculator CouponCalculator Formulas
DiscountCalculator

CompoundBalance SimpleBalance Interest
EffectiveAnnualBalance

YieldDaemon ForcastDaemon Purpose
MaturityDaemon

CashFlow WeightedCashFlow Formulas

Is this the best, or even the last, decomposition of this problem? Not likely. As the application
grows and evolves these objects will take on additional responsibilities which may or may not fit
well in this framework. Designs vary in their ability to accommodate change. A design with

slack can advance in many directions, one with none cannot change without regression.

The amount of slack in our program has varied throughout development. The introduction of
new kinds of objects (i.e. frameworks) takes time but creates slack. Coding against a framework
(by using excessive navigation or case analysis, for example) consumes slack. We have often
allowed slack to run dangerously low, waiting for a specific project to motivate reorganization.
In the following table we group objects by their respective framework, identify the motivating
project behind the framework, and list them in chronological order.

Object Motivating Project Date

CellPane Standard framework n.a.
ReportBrowser

PositionReport User-defined reports 6/89
AveragedColumn
DatedPosition

CashFlow Performance report 8/89

GICCalculator Standard formulas 9/89

FormattedRows Subtotals 1/90

YieldDaemon GICs 4/90
CompoundBalance

Would different project priorities have produced a different program? My guess is no. The
creation of slack for expansion is only the third of three forces we have seen applied to the
decomposition. The other two, lifetime and inheritance, overwhelm the third. This holds true, of
course, only so long as project priorities allow for the creation of slack through regular
reorganization.

We have traced the computation of the value of a report cell containing a GIC's yield. Of the ten
objects involved, one half had interface responsibilities, the other half, computational
responsibilities. We analyzed the decomposition from three perspectives, lifetime, inheritance
and chronology. We speculate that chronology has little influence on the final product so long as
sufficient "investment in slack" is maintained throughout the schedule.

Scanned and reformatted March 1, 1999
Ward Cunningham

