

PLop Submission

© Martin Fowler 15 May 1996

1

Recurring
Events

Martin Fowler

100031.3311@compuserve.com

I am very happy living, as I do, in the city of Boston. I have a nice apartment
in an attractive brownstone building. It’s not the poshest part of town, but its
lively and a short walk from most things I need. I do have a few irritations,
however, and one of these is street cleaning. Now I like to have clean streets,
but I also have to park my car on the street (off-street parking is incredibly ex-
pensive). If I forget to move my car, I get a ticket, and I often forget to move my
car.

Street cleaning outside my house occurs on the first and third Monday of the
month between April and October, except for state holidays. As such its a re-
curring event, and recurring events have been a recurring event in my model-
ing career. An electricity utility I worked with sent out their bills on a schedule
based on recurring events, a hospital books its out-patient clinics on a sched-
ule based on recurring events, a payroll is run on a schedule based on recur-
ring events, indeed employees’ pay is based on rules that are often based on
recurring events.

This pattern language describes how we can deal with these recurring events
in a computer system, so that the computer can figure out when various
events occur. We begin by looking at where the responsibility should lie for
working them out.

Schedule (1)

 suggests that we define a specific class to han-
dle the understanding of recurring events, so any objects that needs to deal
with them (whether a doctor or a street) can do say by being given a schedule.
This schedule object can be tricky to visualize, however, especially if you tend
to think of objects in terms of their properties.

Schedule’s Interface (2)

 allows
you to think about what you want from the schedule rather than how you set
up a schedule.

With the interface in hand, we can now begin to think about schedule’s prop-
erties. A schedule needs to work out which events (there may be several) occur
on which days.

Schedule Element (3)

 does this by giving a schedule a schedule
element for each event, with the ‘when’ part delegated to a temporal expres-
sion. A temporal expression has an individual instance method [2] to work out
whether a day lies within the temporal expression or not. At this point we sep-
arate the (simple) event matching from the (tricky) time matching.

We could come up with some language for defining temporal expressions, or
some powerful class that can be used to handle the rather wide range of tem-
poral expressions that we need to deal with. However I’m not inclined to devel-
op a complex general solution if I can think of a simple solution that solves

my

(1) Schedule PLop Submission

2

Recurring Events

problem. Such a simpler solution is to think of some simple temporal expres-
sions, and define subclasses of temporal expression for them.

Day Every
Month (4)

 handles such expressions as ‘second monday of the month’.

Range
Every Year (5)

 deals with such things as ‘between 12 April and 4 November’
each year. I can then combine these temporal expressions with

Set Expression
(6)

 to develop more complex cases, such as my street cleaning.

1 Schedule

My friend Mark is a physician in a London hospital. On the first and third
monday of the month he has a gastro clinic. On the second wednesday of the
month he has a liver clinic. (Actually I don’t know what his real schedule is
and I’m making this up, but I’m sure you’ll forgive me.) His boss may have a
liver clinic on the second and fourth Tuesdays of a month, and golf on every
monday (hospital consultants seem to do a lot of research on golf courses, I
guess the swing is good for their technique).

One way of representing this might be to consider that Mark has a set of dates
for each event (Figure 1). This supports our needs, since we can now easily tell
the dates of Mark’s clinics, but it comes with its own problems.

The first problem is that when we have an association for each event that Mark
has, we have to modify the model for each change we make. Should our doc-
tors get a new kind of clinic, or take up gliding, we have to add an association,
which implies changing the interface of the person class.

Figure 2 deals with this problem by using a qualified association. It defines a
new type, event, and says that each person has a set of dates for each instance
of event (qualified association are talked about in more detail in [2] as keyed

Figure 1. OMT[3] object model for a person with an association for each event.

Figure 2. Person with a qualified association to date

golf games

liver clinics

gastro clinics

Person Date

Person Date

Event

event

PLop Submission Schedule’s Interface (2)

Recurring Events

3

mappings, they correspond to Smalltalk dictionaries or C++ STL maps). Now
whenever if we get some new clinic, all we have to do is create a new instance
of event, which deals well with that problem.

Another problem is to ask how we would set up the dates? Do we actually want
to imply that we have to assert the individual dates for the person. We would
prefer to just say ‘every second monday’. Bear with me on that one, I’ll come
to it later.

Figure 2 is certainly heading in the right direction, but I’m not comfortable
with the responsibility on person. I can imagine many questions you might
want to ask regarding the dates, and loading all that stuff onto person is awk-
ward, because person will usually has enough to do in any system I come
across. Also you will find other objects that might have similar behavior, such
as my street.

So I’m inclined towards Figure 3 which puts all the responsibility of tracking
dates and events on a separate type: schedule. Now if we want some type to
have this behavior we just give them a schedule.

2 Schedule’s Interface

What kind of questions are we going to ask the schedule? Schedule is one of
those objects that can really trip up people like me who have come from a data
modeling / database background. This is because that training makes us want
to look at schedule in terms of its properties. Providing we are using taking a
conceptual perspective, and not getting hung up on what is stored and what
is calculated; this is not too much of a problem, at least for information sys-
tems. I find that schedule is one of the exceptions, for whenever I have worked
with it I get frazzled.

Thinking of an object through its properties is a very natural way to think of
something. It allows us an easy mechanism both to query and change the ob-
ject. When frazzling occurs, however, then that is a sign to try another tack. At
this point I look at how I might use a schedule once I have one. I forget about
its internal structure, I also forget about how I set one up. Both of those are
secondary to using a completed schedule, so I just assume its set up by magic
and ask myself what I want it to do.

Figure 3. Using schedule as a separate object.

Schedule Date

Event

Person event

(3) Schedule Element PLop Submission

4

Recurring Events

I doubt if I would really want Mark’s schedule to tell me all the days he is due
for a gastro clinic. I might want to know which days he was booked this month,
but not from the epoch to the end of time. So one question would be

Occurrences
(Event, DateRange)

 which would return of set of dates. Another would be to find
out when his next gastro clinic is scheduled, this might be from today, or from
another date:

nextOccurrence (Event, Date)

. A third would be to determine whether
an event would occur on a given date:

 isOccurring(Event, Date)

. Naturally you would
examine your use cases to come up with some more, but we don’t want the full
list, merely the core items (Listing 1). With these I have a sense of where to go
next because I know what I want to aim at next.

3 Schedule Element

With some picture of an interface we can now begin to think about how a
schedule is created. The main point of a schedule is that it tracks a correspon-
dence between events and dates, and does so in such a way that the dates can
be specified by some expression. This leads me to a schedule containing ele-
ments, each of which links an event to some expression that determines the
appropriate dates. Whenever some expression rears its head properties cause
more trouble than they are worth, so again I think of an interface. This expres-
sion should have some way of telling whether a particular date is true or not.
Thus each instance of this temporal expression will have a method that takes
a date and returns a boolean (Figure 4). This is an example of the Individual
Instance Method pattern [2], each schedule element would have its own meth-
od for determine whether or not a date fits it. Conceptually we can think of the
method as a block of code, but one that is different for each instance. A regular
instance method (or member function) executes against an instance but is the
same for all instances of the class. In this case the method executes against
an instance and is different for each instance. I will look at implementing this
a little later, again sorting out the interface is important.

Example:

Mark has a gastro clinic on the first and third mon-
day of the month, and a liver clinic on the second wednesday.
This would be represented by a schedule with two schedule el-
ements. One schedule element would have an event of ‘gastro
clinic’ and a temporal expression that would handle the first
and third monday of the month. The other schedule element
would have an event of ‘liver clinic’ and a temporal expression
that would handle the second wednesday of the month.

Here the dynamic behavior is getting interesting. The core behavior is that of
responding to

isOccurring

.The schedule delegates the message to its elements.
Each element checks the event for a match and asks the temporal expression

class

Schedule

 {
public boolean

isOccurring(String eventArg, Date aDate)

public Vector

dates (String eventArg, DateRange during)

public Date

nextOccurence (String eventArg, Date aDate)

};

Listing 1. Java[1] interface for schedule

PLop Submission Schedule Element (3)

Recurring Events

5

if the date matches. The temporal expression thus needs to support a boolean
operation

includes (Date)

. If the event matches and the temporal expression re-
ports true then the element replies true to the schedule. If any element is true
then the schedule is true, otherwise it is false. (Figure 5, and Listing 2)

The patterns have brought us to a point where the problem of considering the
event is separated from that of forming the temporal expression. All we need
to do know is figure out how to form the temporal expression, and all is dandy.

Figure 4. Schedule Element

Figure 5. Interaction diagram to show how a schedule finds out if an event occurs
on a date.

Schedule Schedule
Element

Event

Temporal
Expression

Method

Interface:
in Date
out Boolean

a Schedule
a Schedule
Element

a Temporal
Expression

A schedule is asked to check an event
on a date.

It asks each schedule element to check
the event and date.

The schedule element sees if the event
is the same and gets the temporal
expression to test the date.

If any schedule element replies true
then so does the schedule, otherwise it
replies false

isOccurring

isOccurring

includes

(4) Day Every Month PLop Submission

6

Recurring Events

4 Day Every Month

So far we have a temporal expression which can say true or false for any given
day. Now the question is ‘how do we create such thing?’ The conceptually sim-
plest idea is to have a block of code for each object, conceptually simple but
rather awkward to implement. We could develop some interpreter that would
be able to parse and process a range of expressions that we might want to deal
with. This would be quite flexible, but also pretty hard. We could figure out
some way to parameterize the object so that all possible expressions could be
formed by some combination of properties. This may be possible, it certainly
would be tricky.

Another approach is to look at some of kinds of expression that this system
has to deal with, and see if we can support them with a few simple classes. The
classes should be as parameterized as possible, but each one should handle a
particular kind of expression. Providing they all respond to

includes

, this will
work. We may not be able to cover everything that we can conceive of, at least
not without creating a new class, but we may well be able to cover pretty much
everything with a few classes.

The first such animal is to cope with phrases like “first monday of the month”.
In a phrase such as this we have two variables: the day of the week, and which
one we want in the month. So our day in the month temporal expression has
these two properties (Figure 6). Internally

includes

 uses these to match the date
(Listing 3).

Example:

Mark has a gastro clinic on the second monday of the
month. This would be represented using a day in month tem-
poral expression with a day of the week of monday and a count
of 2. Using Listing 3 this would be

 DayInMonthTE (1, 2).

Example:

Mark also has a liver clinic on the last friday of the
month. This would be represented using a day in month tem-

class Schedule

 {
public boolean

isOccurring(String eventArg, Date aDate)

 {
ScheduleElement eachSE;
Enumeration e = elements.elements();
while (e.hasMoreElements()) {

eachSE = (ScheduleElement)e.nextElement();
if (eachSE.isOccurring(eventArg, aDate))

return true;
}
return false;

}; …

class ScheduleElement

 {
public boolean

isOccuring(String eventArg, Date aDate)

 {
if (event == eventArg)

return temporalExpression.includes(aDate);
else

return false;
};

Listing 2. Java method to determine if an event occurs on a date

PLop Submission Day Every Month (4)

Recurring Events

7

poral expression with a day of the week of friday and a count of
-1.

Figure 6. Day in month temporal expression

abstract

class TemporalExpression

 {
public abstract boolean includes (Date theDate);

}

class DayInMonthTE

 extends TemporalExpression{
private int count;
private int dayIndex;
public

DayInMonthTE (int dayIndex, int count)

 {
this.dayIndex = dayIndex;
this.count = count;

};
public boolean

includes (Date aDate)

 {
return dayMatches (aDate) && weekMatches(aDate);

};
private boolean

dayMatches (Date aDate)

 {
return aDate.getDay() == dayIndex;

};
private boolean

weekMatches (Date aDate)

 {
if (count > 0)

return weekFromStartMatches(aDate);
else

return weekFromEndMatches(aDate);
};
private boolean

weekFromStartMatches (Date aDate)

 {
return this.weekInMonth(aDate.getDate()) == count;

};
private boolean

weekFromEndMatches (Date aDate)

 {
int daysFromMonthEnd = daysLeftInMonth(aDate) + 1;
return weekInMonth(daysFromMonthEnd) == Math.abs(count);

};
private int

weekInMonth (int dayNumber)

 {
return ((dayNumber - 1) / 7) + 1;

};

Listing 3. Selected Java code for a day in month temporal expression.

Java’s date class represents day of the week using an integer range 0–6 for sun-
day–saturday. I have used the same convention.

Temporal Expression
includes (Date) [abstract]

Day in Month
Day of Week
count: Integer

includes (Date)

(5) Range Every Year PLop Submission

8

Recurring Events

5 Range Every Year

Some events can occur in a particular range in a year. In a British government
establishment they had set dates for turning the heating on and off (they didn’t
respond to anything as logical as temperature). To handle this we can use an-
other subtype of temporal expression, this one can set up with start and end
points, using a month and a day (Figure 7). We can create one of these expres-
sions several ways, depending on whether we need date precision or not (List-
ing 4). A common need is to indicate just a single month, as we shall see later.
The includes method now just looks at the date and tests whether it fits within
that range (Listing 5).

Example:

The heating is turned off on the 14 April and turned
on the 12th October. This could be represented as a range each
year temporal expression with a start month of April, start date
of 14, end month of October, and end date of 12. Using

RangeE-
achYearTE

 it would be set up with

RangeEachYearTE (3, 9, 14, 12)

1

Figure 7. Range each year temporal expression.

public

RangeEachYearTE (int startMonth, int endMonth,
 int startDay, int endDay)

 {
this.startMonth = startMonth;
this.endMonth = endMonth;
this.startDay = startDay;
this.endDay = endDay;

};
public

RangeEachYearTE (int startMonth, int endMonth)

 {
this.startMonth = startMonth;
this.endMonth = endMonth;
this.startDay = 0;
this.endDay = 0;

};
public

RangeEachYearTE (int month)

 {
this.startMonth = month;
this.endMonth = month;
this.startDay = 0;
this.endDay = 0;

};

Listing 4. Creating a range each year temporal expression

If no date is specified it is set to zero.

Temporal Expression
includes (Date) [abstract]

Range each Year
start month
end month
start day
end day

includes (Date)

PLop Submission Set Expression (6)

Recurring Events

9

6 Set Expression

The temporal expressions above provide some ability to represent the kinds of
problem we deal with, but we can greatly enhance their abilities by combining
them in set expressions (Figure 8 and Listing 6). Indeed this is a useful tech-
nique whenever you want to combine some kind of selection expression (you
can also think of these as boolean operations). With set expression in place you
can form more complex temporal expressions by combining the simpler ones
above.

Example:

The US holiday of memorial day falls on the last mon-
day in May. This can be represented by an intersection tempo-
ral expression. Its elements are a day in month with count -1
and day of week of monday, and a range every year with start
and end month of may.

Example:

 Street cleaning occurs from April to October on the
first and third mondays of the month, excluding state holidays.
The representation is rather tricky to describe in words, so take
a look at Figure 9, the code is in Listing 8.

1. Yes the months are correct. Java’s date class represents months with an
integer of range 0–11.

public boolean

includes (Date aDate)

 {
if (monthsInclude (aDate))

return true;
if (startMonthIncludes (aDate))

return true;
if (endMonthIncludes (aDate))

return true;
return false;

};
private boolean

monthsInclude (Date aDate)

 {
int month = aDate.getMonth();
return (month > startMonth && month < endMonth);

}
private boolean

startMonthIncludes (Date aDate)

 {
if (aDate.getMonth() != startMonth) return false;
if (startDay == 0) return true;
return (aDate.getDate() >= startDay);

}
private boolean

endMonthIncludes (Date aDate)

 {
if (aDate.getMonth() != endMonth) return false;
if (endDay == 0) return true;
return (aDate.getDate() <= endDay);

}

Listing 5. The includes method for RangeEachYearTE

(6) Set Expression PLop Submission

10 Recurring Events

Figure 8. Set expressions

class UnionTE …
public boolean includes (Date aDate) {

TemporalExpression eachTE;
Enumeration e = elements.elements();
while (e.hasMoreElements()) {

eachTE = (TemporalExpression)e.nextElement();
if (eachTE.includes(aDate))

return true;
}
return false;

};
class IntersectionTE…

public boolean includes (Date aDate) {
TemporalExpression eachTE;
Enumeration e = elements.elements();
while (e.hasMoreElements()) {

eachTE = (TemporalExpression)e.nextElement();
if (!eachTE.includes(aDate))

return false;
}
return true;

};
class DifferenceTE …

public boolean includes (Date aDate) {
return included.includes(aDate) && !excluded.includes(aDate);

};

Listing 6. Includes methods for the set expressions

excludes

includes

Temporal Expression
includes (Date) [abstract]

Collection TE

Difference TE
includes (Date)

Union TE
includes (Date)

Intersection TE
includes (Date)

elements

PLop Submission Set Expression (6)

Recurring Events 11

Going Further
Time and the PLoP limits bring to a halt here, however I should not stop with-
out indicating some further patterns that need to be developed.

❍ When holidays occur they may cancel out the recurring event (as
occurs in street cleaning). But a substitute may occur, such as do it
the following monday, or the next thursday.

IntersectionTE result = new IntersectionTE();
result.addElement(new DayInMonthTE(1,-1));
result.addElement(new RangeEachYearTE (4));
return result;

Listing 7. Code for creating a temporal expression for memorial day.

Figure 9. Instance diagram showing objects to represent a street cleaning schedule

public DifferenceTE streetCleaning() {
UnionTE mon13 = new UnionTE();
mon13.addElement(new DayInMonthTE(1,1));
mon13.addElement(new DayInMonthTE(1,3));
IntersectionTE nonWinterMons = new IntersectionTE();
nonWinterMons.addElement(mon13);
nonWinterMons.addElement(new RangeEachYearTE (3,9));
return new DifferenceTE(nonWinterMons, maHolidays());

}

Listing 8. Java code for the street cleaning schedule

includes

DifferenceTE

UnionTEIntersection
T E

Range Every Year
Apr – Oct UnionTE

Day in Month
count = 1

day = Monday

Day in Month
count = 3

day = Monday

excludes

various holidays

(6) Set Expression PLop Submission

12 Recurring Events

❍ The patterns here concentrate on events, but they can also be used to
handle defining days as working days, or further ways to classify
days. This may be as simple as every Monday to Friday is a working
day.

❍ Some events should not occur on the same day. Can we do something
about this, or just trust our ability to write good temporal expres-
sions?

❍ How do we handle a schedule such as four weeks on two weeks off?

References
1 Arnold, K. and Gosling, J. The Java Programming Language, Addison-Wesley,

Reading, MA, 1996.
2 Fowler, M. Analysis Patterns: reusable object models, Addison-Wesley, Reading MA,

in press.
3 Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. Object-

Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

Name Problem Solution

1 Schedule
Someone has events which occur on
certain recurring days.

Create a schedule object for the doctor
which can say which days an event
occurs on

2 Schedule’s Interface Schedule is awkward to visualize
Consider its interface when it is cre-
ated and ready for use. Determine the
key operations.

3 Schedule Element
You need to represent recurring days
without enumerating them

Schedule Element with event and tem-
poral expression. Temporal expres-
sion has an individual instance method
to determine if dates match.

4 Day Every Month
You need to represent statements of
the form 2nd Monday of the Month

Use a day every month temporal
expression with a day of the week and
a count

5 Range Every Year
You need to represent statements of
the form 14 March till 12 October

Use a range every year temporal
expression with a day and month at
the start and end

6 Set Expression
You need to represent combinations of
temporal expressions

Define set combinations for union,
intersection and difference

Table 1: Table of Patterns

