
I E E E S O F T W A R E 0 7 4 0 - 7 4 5 9 / 9 7 / $ 1 0 . 0 0 © 1 9 9 7 I E E E 5 3

Using Patterns to
Improve Our
Architectural

Vision

Pattern languages can
play an important role in
furthering the use of
architecture and objects
in software design. But
first we must understand
what these terms mean.
The authors use the work
of Christopher
Alexander to illuminate
the problems and shed
light on future directions
in our use of pattern
languages in design.

espite their repeated use in software develop-
ment, the terms “objects,” “architecture,” and,
most recently, “patterns” are not generally
understood. The situation is well character-
ized by an exchange in Lewis Carroll’s
Through the Looking Glass when Humpty
Dumpty tells Alice, “When I use a word . . . it

means just what I choose it to mean, neither more nor less.”
Objects may pose less of a problem than the other terms, but

even here misunderstanding is possible. For example, we have
both used objects for more than a decade, and in our discussions
we generally assume that “object” means a single unit that
♦ encapsulates routines and data,
♦ can inherit behaviors from a parent, and
♦ can exist as multiple instances.
Still, this simple definition does not seem to encompass the term
“object” fully. When we say “object” we also imply a problem-
solving strategy associated with object use. This strategy is ethe-
real and thus very difficult to talk about. Before you have experi-
enced it, no words will help you understand; after you experi-
ence it, words don’t exist to explain it.

NORMAN L. KERTH, Elite Systems
WARD CUNNINGHAM, Cunningham & Cunningham

D

.

5 4 J A N U A R Y 1 9 9 7

Christopher Alexander writes about
this phenomenon, calling it a quality-
without-a-name. Alexander explores
synonyms that come close to describ-
ing the phenomenon—including alive,
whole, comfortable, free, exact, ego-
less, and eternal—but concludes that
“No word can ever catch the quality-
without-a-name because the quality is
too particular, and words too broad.
And yet it is the most important quality
there is, in anyone, or anything.”1

Although we generally think of an
object as being concrete, it is just this
elusive and ethereal quality that makes
the object concept special and impor-
tant. It is a quality that exists in archi-
tecture as well, but in a more compli-
cated way.

The notion of quality-without-a-
name is deeply based in each of us. It
helps us agree on creative greatness,
whether it be in music, art, architec-
ture, or software. Quality-without-a-
name also drives us to develop a phi-
losophy that underlies our own cre-
ative acts. The better we understand

quality-without-a-name, and how our
personal philosophy is developed, the
more we will know about creating fine
software architecture.

UNDERSTANDING
ARCHITECTURE

In the November 1995 IEEE Soft-
ware special issue on architecture,2

there are six theme articles. In each
article, authors define the term archi-
tecture differently, ranging from rules
for assembling modules to multiple,
cooperating models. Others have
attempted to define the term as well.3,4

Defining views. Faced with this variety
of definitions, we began to explore
what they had in common. We found
instead a range of meanings including

♦ a synonym for design,
♦ prototyping or early implementa-

tion,
♦ a high-level system overview, and
♦ an explanation of how a particu-

lar technology will be incorporated
into a particular system.

We also found many different ways
to represent architecture, including

♦ quick sketches on a white board,
which are erased before the system
enters maintenance;

♦ a generic, tiered model with per-
tinent names for different levels;

♦ elaborate English prose, usually
understood only by the author; and

♦ standard notations defined by

popular texts on analysis or design
methodology.

Why does the term architecture have
so many different meanings? Why do
architectural representations vary so
much in both their value and the
approach to construction they imply?
The answer is simple: Arch-itectures
vary according to a project’s size, tim-
ing, and goals; its level of risk and
innovation; and the number of people
involved, their proximity, and their
ability to communicate and resolve
conflict.

However, understanding the rea-
sons for diverse definitions is not
enough; there are other issues that
must be explored if we are to under-
stand architecture.

Varying views. When used with
objects, the architecture drives their
development. But architecture is more
that just a high-level design of how
objects might be used. The architec-
ture includes complementary architec-
tural viewpoints that can illuminate
nuances of the problem at hand or
explain concepts that are factored into
the design of numerous objects.

To illustrate this point, let’s exam-
ine a subtle architecture issue that sur-
faced in a bond-trading application. In
this application, there are examples of
abstract objects for bonds, trades,
dates, and payments, and two kinds of
users: traders and bookkeepers. The
users measure time in whole days and
recognize these days as periods in
which securities are traded and bonds
accrue interest.

However, as Figure 1 shows, traders
start and end their intervals at the close
of the trading day, before interest has
accrued, whereas bookkeepers start and
end their intervals as trading opens and
include the accrued interest. The
application is further complicated
because most bonds accrue interest
uniformly, making the time distinction
undetectable. Still, if the odd bond is
to fit into the architecture, the timing

Bookkeeper's view

Trading
period

Accrual
period

Trading
period

Accrual
period

Trading
period

Accrual
period

Trading
period

Trader's view

Architectural
views

doMapping Object
design

Figure 1. Two views of a trading day based on different time intervals.

Figure 2. A simple example of the
mapping between architecture and
objects.

.

I E E E S O FT W A R E 5 5

distinction must be made at all levels of
the program.

In this example, understanding how
dates are interpreted is key to master-
ing the system. The interpretation is
not the responsibility of a single object,
but is a concept that drives the design
decisions for a variety of objects. Thus,
that dates are interpreted from multi-
ple viewpoints is an architectural view-
point of a bond-trading application.

An architectural viewpoint is often
application-specific and varies widely
based on the application domain. In
reviewing our own software design
experiences, we have seen architectural
viewpoints that address a variety of
issues, including

♦ temporal issues,
♦ state and control approaches,
♦ data representation,
♦ transaction life cycle,
♦ security safeguards, and
♦ peak demand and graceful degra-

dation.
No doubt there are many more pos-

sible viewpoints. Every system has a set
of architectural viewpoints that must
be resolved before a design can be
developed. These viewpoints, mapped
onto the solution, drive the design
decisions that create systems of objects.
Figure 2 shows a simple mapping
between architecture and objects.

View from the top. To make sense of
the multiple architectural views of a
single system, we looked to the archi-
tect’s role in the centuries-old field of
building design. An after-the-fact study
of a great architect’s work often talks
of the architect’s style. But it is not style
that leads great architects to design
buildings a certain way—it is their
internal philosophy.

If you study a great architect such as
Frank Lloyd Wright, you discover that
his architectures did not come from just
random ideas in his head, but from
blending customer requirements with
deep convictions about how a building
should be made. These convictions are

about how people should interact with
buildings, how buildings relate to their
surroundings, how materials should be
used, and so on. Wright believed build-
ings should fit into their surroundings,
such as the rectilinear ranch house he
designed to fit within the flat plains of
the Southwest. These convictions com-
bine to form a philosophy—a personal
philosophy for a great architect.

In the software field, there are also
great architects whose work is worthy of
study. But we don’t know many of these
people because software architectures
are rarely written about, discussed, or
appreciated. As a profession, we do not
seek out and learn from our great archi-
tects, who often work in obscurity. The
architects for Apple Lisa, MacApp, and
Hypercard, for example, developed fine
systems that greatly advanced our field,
but few people know their names: Eric
Harslem, Larry Tesler, and Bill Atkin-
son, respectively.

As the box on page 58 explains and
Figure 3 shows, architectural philosophy
determines software system design. If we
are to discover, learn from, and emulate
the work of our best architects, we must
not only recognize them, but seek to
understand their philosophy as well.

ENTER PATTERN LANGUAGE

In the software development con-
text, a pattern is an important and
recurring system construct and a pat-
tern language is a system of patterns

organized in a structure that guides the
patterns’ application. A pattern lan-
guage can be represented by a directed
graph or network of patterns.

Although a software architectural
philosophy is ethereal and hard to
explain, a pattern language can embody
the philosophy in a form that can be
written, discussed, and evaluated.
Patterns assembled into a pattern lan-
guage order our thought processes,
much as a natural language’s grammar
orders our sentence structure. The
combination of patterns and their
ordering makes a system rich enough
to carry a philosophy.

Beginnings. In the mid-1980s, Ward
Cunningham and Kent Beck created a
simple pattern language to help users
communicate with system developers
about the type of human interface they
wanted in their system. Five patterns
were identified by number and were
used to guide the human-interface
design for a Smalltalk Model-View-

1

5

2

3 4

Figure 4. A simple pattern language
for human-interface design. Satisfying
Pattern 1 allows the next three patterns,
which in turn make Pattern 4 possible.

Architectural
views

doMapping Object
design

Architectural
philosophy

Requirements

Architectural influence

Figure 3. An architect’s personal philosophy determines the mapping between archi-
tecture and objects.

.

5 6 J A N U A R Y 1 9 9 7

Controller environment:
1. Window per task: Each task a user

needs to perform is handled by a dif-
ferent window.

2. Tiled panes: Logical subtasks are
handled within their own pane. Users
can switch between panes.

3. Pallet of panes: Only a few classes
of simple panes can be used. The pane
classes are text, list, table, and wave-
form.

4. Short menus per pane: Users can
invoke only a few commands while in a
particular pane. Hierarchical or scroll-
ing menus are not allowed.

5. Nouns in lists, verbs in menus: This
differentiates between a command and
an object being operated upon.

Figure 4 shows the five patterns.
Pattern 1 (window per task) is a pre-
requisite to patterns 5, 3, and 2. That
is, satisfying Pattern 1 makes satisfying
the next three patterns possible. These
in turn make Pattern 4 (short menus)
possible. Although these patterns

don’t explicitly cite a philosophy, they
are consistent with and even embody
the particular human-interface philos-
ophy the Smalltalk components were
meant to realize.

Although most real-life systems
would use many more than five pat-
terns, even this simple pattern language
effectively resolves much discussion
about what a system can and cannot do.
It also moves the design power from
developer to user, and assures that the
user designs a workable system.

Patterns today. The notion that there
are patterns of objects that recur in
programs and are worthy of study is
now a very important topic in our field.
The germ of this idea stems from the
recognition that Christopher Alex-
ander’s work has parallels in software
development. As with many new ideas
in our field, many bright people have
seized the idea and tried to apply it in
different ways.

Fundamental to all patterns investi-
gation is the attempt to recognize
recurring situations in design so we can
learn from other people’s experience.
The processes that investigators use to
find patterns varies widely. We will
consider three general categories.

♦ The introspective approach is
when people reflect on the systems
that they have built and find patterns
relating to their experience. This
approach can be described as a search
for individual architectural style.

♦ The artifactual approach studies
systems built by different teams working
on similar problems. The pattern investi-
gator is not involved with system devel-
opment and seeks a more objective per-
spective. This approach can be described
as a study of the software artifacts.

♦ The sociological approach studies
the people building similar systems to
discover the recurring problems in the
systems and in developer interactions.
This technique can best be described
as an investigation through interview.

Patterns thinking is new; so, too, is
patterns investigation. No doubt there
are other approaches, and some
researchers are using a combination of
methods.

PHILOSOPHY AND PROJECT SIZE

As Figure 5 shows, the architectural
philosophy of a software project
becomes more concrete as the project
size increases. In a single-person pro-
ject, you unconsciously map the archi-
tectural view to the object design, as
Figure 6a shows. The philosophy is
internal and ethereal, and a natural way
to solve problems; it is best described
by this statement: “All I have to do is
get my mind around the problem and
the objects will pop out.”

A one-person system has little need
for an expressed architecture. The way
the system will meet the architectural
goals is kept in the designer’s head and
deployed automatically, often without

Team size Source of philosophy

Single person

Small team

Large team

Unrelated teams

Single mind

Shared experience

Chief architect

Pattern language

Figure 5. The relationship between project size and project philosophy.

Architectural
views

Unconscious
mapping

Object
design

Architectural
philosophy

(A) (B)

Architectural
views

Object
designConscious

mapping

Figure 6. On a single-person project [A], the mapping from architectural view to
object design is unconscious. With a small team [B], the mapping becomes overt.

.

I E E E S O FT W A R E 5 7

awareness. But when we move to a
small team, ideas must be expressed to
others and thus the mapping of archi-
tectural view to object design must be
overt, as Figure 6b shows. This expres-
sion is usually informal, through discus-
sion, storytelling, ad hoc pictures, and
refinement. The architectural philoso-
phy remains in the minds of team mem-
bers and is assumed but not named.

As the team grows beyond a few
people, we must make the architecture
explicit and formalize and articulate
the philosophy driving the architec-
ture. As Figure 7 shows, our mapping
model is now more complicated.

On large teams, a chief architect
develops and communicates the archi-
tectural philosophy. Typically, the
architect articulates the philosophy in
an ad hoc fashion and focuses on docu-
menting the architecture. The map-
ping between architectural views and
object design must be quite disciplined
or the architecture might be improper-
ly implemented or simply inadequate.
The result of a failed architecture can be
a system that doesn’t work or one that is
buggy, fragile, and difficult to maintain.
Patterns are useful in this environment
because they suggest common solutions
to common design problems.

When we look at unrelated teams
working in different locations, the
need for conscious application of the
philosophy is clear. (Think, for exam-
ple, of all the Macintosh developers
building software according to Apple’s
philosophy.) Somehow, the ethereal
architectural philosophy must be
shared among the different groups,
along with a careful and detailed
description of the architecture.

Because the architecture generally
evolves as the design progresses and as
various groups raise questions that
impact other groups, you must make
good decisions about object design to
minimize rework and unnecessary
change. Although using objects con-
tributes to the possibility of rework and
change, a pattern language can signifi-

cantly minimize the chaos that results
when many people work independently
on a single system.

A pattern language embodies both
the philosophy and the architecture, as
Figure 8 shows. It acts as a bridge
between the architecture and the
object design, and assures that the phi-
losophy is communicated, taught, and
followed. What was once ad hoc and
informal is now explicit, but without
the developer constraints a design stan-
dard can impose.

TOWARD THE FUTURE

In The Timeless Way of Building,1

Alexander applies a disciplined
approach to studying patterns. For our
purposes, there are three significant
components of his work.

♦ Problem solving. Alexander devel-
oped a directed graph of patterns—
which he called a pattern language—to
help solve large problems such as the
design and construction of buildings
and towns. The idea evolved from his
strong mathematical foundation and a
mastery of systems theory combined
with his belief that the human brain
follows certain paths to understand
patterns, just as it follows certain paths
to understand natural language.5

Alexander’s approach reduces a seem-
ingly massive problem into several
smaller problems connected by a
grammar. This grammar allows devel-
opers to intentionally ignore aspects of
the large problem early in the design,
knowing that they will be addressed at
the appropriate time.

♦ Philosophical base. Alexander devel-
ops a process that includes identifying,
accepting, valuing, and discarding par-
ticular patterns in his pattern language.
His architectural philosophy is embod-
ied in this process. Although the phi-
losophy is ethereal and abstract—as we
might expect—it is consistent and pro-
vides the basis for developing concrete
pattern languages.

♦ Application. Alexander applies his
pattern language to real-life projects,
such as building a cafe in Vienna,6 devel-
oping a master plan for the University of
Oregon,7 and creating a town in Baja,
California.8 He has reported on several
of these projects in a series of books. In
them, he discusses what works and, just
as importantly, what does not.

Present tense. Despite appearances,
little of Alexander’s work has been mir-
rored in the software community. We
have used the word “pattern” and, in
some instances, decided what must be
captured when documenting a pattern.

Philosophy violated;
architectural decisions overridden

Architectural
philosophy

Architectural
views

Object
design

Discuss
philosophy

Figure 7. As the size of the project grows, so too does the complexity of mapping
between architecture and object.

Architecture
embodied in

pattern language

Architectural
philosophy

Architectural
views

Object
design

Discuss
philosophy

Mapping influenced by
pattern language

Philosophy
embodied in

pattern language

Pattern
language

Figure 8. A system’s architecture and the philosophy underlying it are embodied in a
pattern language.

.

5 8 J A N U A R Y 1 9 9 7

However, the most popular pattern
texts have been merely collections of
isolated patterns. If you use these
works, you will not be guided by a
grammar—you have to simply study
the patterns and hope you recognize
one that applies to your project.

In our own work with pattern lan-
guages, we have begun to embody
philosophical ideas.9,10 However, these
ideas are a side effect of introspection
rather than something we intended.
Basically, we allowed our strong inter-
nal philosophies to guide our discovery
process, not unlike taking a position in
a philosophical debate. Had we con-
sciously set out to understand our
philosophies, we may have found a
deeper set of patterns.

A great architect has a deep, consis-
tent philosophy that is likely to grow
and change over time. But each soft-
ware developer need not have an indi-
vidual philosophy. Developers can
learn the philosophy of a master archi-
tect and choose to emulate it. In fact,
as we see from the building profession,
most good young architects will strive
to emulate a master, and over time and
with experience will develop their own
philosophy.

Future perfect? To effectively build
large object systems that realize a phi-
losophy, we must use a pattern lan-
guage. First, however, we must develop
effective pattern languages. Using
Alexander’s work as a guide, we can
formulate a methodical approach:

♦ Develop a consistent philosophy
for building systems.

♦ Construct a pattern language that
reflects this philosophy. We must then
assure that the patterns in the language
are effectively discovered, evaluated,
and woven into a system of patterns in
such a way that later design decisions
do not force us to rework earlier ones;
and earlier design decisions do not
limit decisions later in the process.

♦ Carefully test the pattern lan-
guage and report our findings in an
objective manner.

Currently there are people exploring
and finding software patterns using the
three different approaches to patterns
investigation we described earlier. Based
on our own work, we’ve formulated rec-
ommendations for each approach so it
can best benefit future designers.

♦ Introspective. Although their work
embodies a philosophy, introspective
explorers work without awareness of its

role. They become aware of philo-
sophical aspects when a pattern violates
a philosophical value; the questions
they then ask can lead to the discovery
of new patterns. In the future,
Alexander’s third component—report-
ing on real-life projects and noting
successes and failures—must be
addressed at this level. Introspectively
derived pattern languages are a valu-
able resource for forward-looking
architectural solutions. We need inde-
pendent evaluation and feedback to
help acknowledge their value.

♦ Artifactual. Although the artifac-
tual researchers most closely parallel
Alexander’s work, they only look at
project artifacts and draw conclusions.
They do not work from an architectur-
al philosophy. In the future, these
researchers must work on articulating
philosophies and developing an evalua-
tion process.

♦ Sociological. This research area has
been tapped only slightly.11 We need
to develop skills that support investiga-
tion through interviewing. At this
point, we have only our natural listen-
ing and observation skills. Cultural
anthropologists know a great deal
about how to study a cultural system.

The early work of Apple Macintosh designers shows the
influence of architectural philosophy on a software system.
The architecture for Macintosh applications stands apart
from the requirements, but influences every good application
designed for the machine. The system’s architectural ele-
ments include

♦ the notion of users in control of their computers (event-
driven programming),

♦ users freely moving snippets of information (cut and
paste), and

♦ users sharing a network (distributed desktops).
But the philosophy is more than the sum of these architectur-
al elements.

The philosophy behind the Mac design predates Apple.
“Computers augmenting the human intellect” was first artic-
ulated by Douglas Engelbart, who credits Vannavar Bush and
his imaginary device, the Memex, as his inspiration.1, 2 The
work of these innovators was initially very difficult to under-
stand. They were often discussing concepts that were yet to
be implemented and the practicality of their work was not
obvious.

Nevertheless, their philosophy slowly grew in several lab-
oratories until it was finally used in a product by the
Macintosh developers. For the most part, the developers’
adoption of this philosophy involved ethereal discussions of
what the machine could do for people and how people would

work with the machine. It was not a precise doctrine that
could be written. Rather, it was the personal acceptance of
values that defined the philosophy.

This philosophy motivated most of the discussion in Inside
Macintosh.3 It was embodied in the MacApp framework and
was the foundation for Apple’s evangelism work. But because
of its ethereal nature, the philosophy was never successfully
documented and was often missed by uninitiated developers.
Even Macintosh users and software developers who under-
stood the Macintosh system couldn’t explain the philosophy.
Telling a new programmer that the “computers must aug-
ment the human intellect” provided no tanglible guidelines
for development. Nevertheless, the philosophy existed and
was clearly apparent in the product. As Alexander predicted
with his quality-without-a-name, once the philosophy was
mastered, it could not be explained.

REFERENCES
1. J. Norton and R.W. Watson, “The Augment Knowledge Workshop,”

National Computer Conf. Proc., American Federation of Information
Processing, June 1973, pp. 9-21.

2. D. Engelbart, “As We May Think,” Atlantic Magazine, July 1945.
3. C. Rose with B. Hacker, et al., Inside Macintosh, Addison-Wesley, Reading,

Mass., 1985.

A PHILOSOPHY CREATES A SYSTEM

.

I E E E S O FT W A R E 5 9

Ward Cunningham is cofounder of Cunningham &
Cunningham. He has served as a principal in the IBM
Consulting Group and as director of R&D at Wyatt
Software, where he designed the WyCash portfolio
management system. He also developed the Foundation
graphical framework while with Knowledge Systems. As
a principal engineer at Tektronix Computer Research
Lab, he did research in object-oriented programming,
computer-aided design, and human-computer inter-
faces. He has studied and authored pattern languages
for more than a decade and served as program chair of

the Pattern Languages of Programs conference.
Cunningham is a member of the ACM and the American Association for the

Advancement of Science (AAAS).

We must learn their skills and experi-
ment with applying them to the pat-
tern-discovery process.

o date, the study of patterns has
been limited to a small commu-

nity of pattern-language developers
and a few academics. Participants in a
recent OOPSLA session expressed
concern that because industry work on
patterns draws heavily on practical

experience, pattern language use
would increase the distance between
industrial and academic researchers.
However, a closer look suggests some-
thing quite different.

Pattern language anthropology and
archeology are disciplines waiting to be
developed. The professionals who pio-
neer these fields will chart the method-
ologies of software architecture develop-
ment and bring to light the genius and

mastery that have remained too long in
obscurity. They will discover new mate-
rial and structures that enable us to
understand, discuss, and teach the
philosophies, architectural elements, and
pattern languages of our finest practi-
tioners. Their success—and the ultimate
importance and sophistication of this
new information—will depend upon
academia and industry working together
more closely than ever before.

T

◆

REFERENCES
1. C. Alexander, The Timeless Way of Building,

Oxford Univ. Press, New York, 1979. p. 39.
2. M. Boasson, “The Artistry of Software

Architecture,” IEEE Software, Nov. 1995,
pp. 13-16.

3. M. Moriconi, X. Qian, and R.A.
Riemenschneider, “Correct Architecture
Refinement,” Trans. Software Eng., Apr. 1995,
pp. 356-372.

4. D. Perry and A.L. Wolf, “Foundations for
the Study of Software Architecture,” ACM
Software Eng. Notes, Oct. 1992, pp. 40-52.

5. S. Pinker, The Language Instinct, William
Morrow, New York, 1994.

6 C. Alexander, The Linz Cafe/Das Lins Cafe,
Oxford Univ. Press, New York, 1981.

7. C. Alexander, The Oregon Experiment,
Oxford Univ. Press, New York, 1975.

8. C. Alexander with Howard Davis et al.,
The Production of Houses, Oxford Univ. Press,
New York, 1985.

9. N.L. Kerth, “Caterpillar’s Fate: A Pattern
Language for the Transformation from
Analysis to Design,” Pattern Languages of
Program Design, J.O. Coplien and D.C.
Schmidt, eds., Addison-Wesley, Reading,
Mass., 1995, pp. 293-324; also see
http://c2.com/ppr/catsfate.html.

10. W. Cunningham, “The Checks Pattern
Language for Information Integrity,”
Pattern Languages Program Design, J.O.
Coplien and D.C. Schmidt, eds., Addison-
Wesley, Reading, Mass., 1995, pp. 145-156;
also see http://c2.com/ppr/checks.html.

11. J.O. Coplien, “A Generative Development-
Process Pattern Language,” Pattern
Languages of Program Design, J.O. Coplien
and D.C. Schmidt, eds., Addison-Wesley,
Reading, Mass., 1995, pp.183-238.

Address questions about this article to Kerth at Elite Systems, P.O. Box 2205, Beaverton, OR 97075; nkerth@teleport.com; or Cunningham at Cunningham &
Cunningham, 7830 SW 40th Avenue, Suite 4, Portland, OR 97219; ward@c2.com.

Norm Kerth is a consultant working with companies
to ensure they make a successful transition to using
object-oriented technologies, postmorta, and pattern
languages. He also consults on specification and design
activities, quality assurance, continuous process
improvement, project management, and effective team
building. He is particularly interested in building large,
distributed object-oriented systems and growing sys-
tem architects. Kerth has been studying pattern lan-
guages for more than a decade, authored the
Caterpillar’s Fate pattern language, and served as co-

editor of Pattern Languages of Program Design 2. Prior to starting his company,
Elite Systems, Kerth was a professor and researcher at the University of
Portland.

He is a member of the IEEE Computer Society and ACM.

.

