The “Swim” System for
User-Oriented Presentation of
Test-Case Results

Ward Cunningham
Chief Technology Officer, AboutUs

ward@c2.com

Ward Cunningham is CTO of AboutUs.org, a growth company hosting the communities formed
by organizations and their constituents. Ward is well known for his contributions to the
developing practice of object-oriented programming, the variation called Extreme Programming,
and the communities supported by his WikiWikiWeb. Ward hosts the AgileManifesto.org. He is
a founder of the Hillside Group and there created the Pattern Languages of Programs conferences
which continue to be held all over the word.

Bjorn Freeman-Benson
Director, Open Source Process, Eclipse Foundation
bjorn.freeman-benson@eclipse.org

While striving to be a Renaissance Man, Bjorn keeps falling back into the clutches of conformity
with engineering stereotypes such as dynamic languages, software engineering, juggling and
general aviation. His escape attempts have been through orienteering, bicycling, planting trees and
painting his airplane. He is passionate about doing things instead of just talking about them, and
he thoroughly enjoys the annual party he helps organize for the Eclipse community.

Karl Matthias
Systems Administrator, Eclipse Foundation
karl.matthias@eclipse.org

Karl is the Portland arm of the IT team and isn't the "new guy" at the Foundation any more
(thanks Chris!). When he's not supporting the infrastructure, working on the portal, or knocking
items off of Bjorn's wish list, he's in the garage restoring his 1969 Alfa Romeo GTV.

Abstract

We describe "Swim", an agile functional testing system inspired by FIT, the Framework for
Integrated Test, and exceeding FIT's capabilities through the inclusion of an end-user-accessible
results-rendering engine. Its output allows developers, testers and end-users to explore business
logic and consequent output from multiple points of view and over extended periods of time.
We've incorporated this engine in the Eclipse Foundation portal to support situated reasoning
about foundation processes and their automation.

The “Swim” System for
User-Oriented Presentation of
Test-Case Results

Ward Cunningham, AboutUs
Bjorn Freeman-Benson, Eclipse Foundation
Karl Matthias, Eclipse Foundation

Introduction

As staff members of the Eclipse Foundation, we faced the challenge of automating many of our
manual workflows while minimizing the cost of doing so. Having seen similar efforts fail, we
chose a new design point that we believed would entice more of our stakeholders to participate.
This paper is about that design point and its success-to-date.

The Eclipse Foundation is a not-for-profit, member-supported corporation that hosts the Eclipse
Projects and helps cultivate both an open source community and an ecosystem of
complementary products and services. In general, the Eclipse Foundation provides four services
to the Eclipse community: IT infrastructure, IP management, project management, and ecosystem
development. Many of these services contain processes best described by an event oriented
workflow, for example, the election of a new Committer to an Eclipse Project
(http://tinyurl.com/2bxnyh) has events such as “start election,” “vote,” “approval needed,”
“committer legal agreement received,” and so on. A simpler example is changing a member's
address and phone number (http://tinyurl.com/22rqdg): even this seemingly simple process
involves checking if the address change is triggered by an employment change because an
employment change will require new committer legal agreements.

99 ¢

Like all organizations, we don't have resources to waste, so an important characteristic of our
solution was our investment in durable test scripts: we didn't want to write the scripts once, use
them to test the system, roll it to production, but then never use the scripts again. We believe
that the only way to protect our test script investment was to involve all the stakeholders in the
production and consumption of scripts, and the only way to achieve that was to use the right
level of abstraction in the scripts (and thus not try to do detailed testing of every API).

Visualizing Long Running Transactions

Our realization, and thus our solution, is based on the fact that the Eclipse Foundation
workflows are really just long running transactions. The transactions operate against a database
(technically against five separate databases, but that's an almost irrelevant technical detail) and
our user interface is HTML and AJAX. The code is all written in PHP.

Our testing solution is to script and visualize these long running transactions by simulating them
using test databases and capturing the output for display.

e 06 Mozilla Firefox =
- - '
committer election mlll
developeri candidate foo-dev pmcmember developer2 technology-pmc |
| start | [nominateJ nominated vote |
) 89 10 11 12 13 as started !
14 1¢ committer
|
W
1 day later voting pmc
summary 4 3 approval
z needed
vote : 38
successful

{screenshot of committer election swim diagram}

The simulation uses as much of the real application code as possible, replacing only the real
databases with test databases, the user input routines with the test scripts, and the browser
output with output stored in buffers for post-processing and evaluation. Consequently the
simulated transactions are the real transactions and the scripts are testing the real application
code and business logic.

Because our transactions can take weeks or months to complete, we obviously run our
simulations faster than real time using a simulated clock. The visualizer post-processes the
results of the simulation to produce an overview two dimensional picture of the progression of
the transaction through time, using a page format inspired by the "swim lane diagrams" made
popular in business process reengineering [Rummler & Brache, 1995]. The overview contains a
column of each person involved in the transaction and icons with fly-out details representing
important interactions. This format has worked well for our need, but could easily be substituted
with some other format without invalidating the rest of our results or even modification of the
test scripts.

The simulator and visualizer are used in development and testing, but are also deployed with the
finished application as a form of documentation. This use of the tests as documentation has
the natural advantage of the documentation being automatically maintained, but it also forces us
to make design choices so that the tests actually make good documentation. In our previous
attempts to provide this same “the tests are the documentation” failed because the tests
contained too much detail to be good documentation; detail that was necessary for testing, but
overwhelming as documentation in the sense of “can't see the forest for the trees”. Our solution
here has a carefully chose set of abstractions that make the scripts both useful as tests and useful
as documentation.

Visualizing for Programming and Testing

The swim visualization we have implemented is useful for both programming and testing. We
take as a given that programmers benefit from test driven development. We also take as a given
that the agile style of “all programming is extending a working system” is an ideal way to build
systems in partnership with users.

Programming

Our simulation and visualization system supports these programming styles in a number of
ways. First, it provides the real “as is” system for detailed study by the programmers and
testers. Second, the test scripts are just PHP code and do not require any special software or
training, thus they are easily composed in advance of programming.

|- login('developerl");

2: find('asterisk_manager');

i check('8888");

i check('60 minutes");

5: press(‘add");

6: enter('pin', '4321");

7: enter('start’, '2009-02-20 00:00:00";
3. enter('stop', '3");

) enter('description’, 'test conference');
10: press('submit');

L 1: show();

1 2: check('[add]");

13: check('8889");

14: press(‘edit', '8889");

1 5: press('delete’, '8889');

16: show();

17: omit('54321");

1 8: check('8888");

19: advance('l day");

20: login('developerl');

21: note('Old conferences are removed');
22: find('asterisk_manager');

23: omit('8888");

24 show();

{example test script}

During development, a test failure may result from incorrect application code or an incorrect test
case. These failures are rendered with red boxes within the visualization, allowing the
programmers to narrow their search for the cause.

e 06 Mozilla Firefox
complete asterisk example X

developer1
T Trouble: cantfind "8888"

[stat |

H7§

J

submit

(result)

r

y

H

Q.
®
®
o
®

—
4]
w
-

J

19

1 day later

A
A

N .
N (=
N X
N

(result)

{visualization of failed test}

One of the features we've added to our scripts is the option to verify whether all of the output
has been checked against expected values. Our scripts are often arranged in suites with one main
comprehensive test and a bevy of smaller variations. The main test verifies all the output against
expected values; additionally, because it verifies all the output, it fails if there is additional
unexpected output.

Additional smaller test scripts only verify the portions of the output that are new and/or
different from the main test and do not re-verify previous results.

hours later pmc
' 4 emails ignored

28 pproved
4 more
emails » From: developer1@example.com (portal on
behalf of Alex Developer)
e From: developer2@example.com (portal on
This diagram sho behalf of Lucy Programmer)
MyFoundation po * From: developer1i@example.com (portal on
perspective ofa d behalf of Alex Developer)
squares to show \ e From: emo@eclipse.org (portal on behalf of
screen. The left | emo)
substantial elapsg
sequence of ever

{ignored emails at end of test}

One programming technique that we have found useful is to add “notes” to a script under
development, often pending changes that we haven't gotten around to including yet. Other uses of
the notes include describing interactions between the user and the system that are not captured
by the script.

Note: candidate has filled out MCQ and it has
arrived here as expected.

{notes used for out-of-band data}

Another very useful programming technique is annotating a script with “variations”. Variations
allow us to group scripts without resorting to external meta-data. Variations are noted in the
script in a straightforward manner identical to all other script commands. Variations are
assertions that succeed if there is another script with the variant name, e.g., if a script named
“contact address” has a variation named “two quick changes”, then the variation command will
succeed if there is another script named “contact address with two quick changes”.

vetoed by committer with everyone voting

{variations visualized in swim diagram}

38:

39

44

press('vote');

: show();
40:
41:
42:
43:

variation('voter changes vote');

variation('vetoed by committer and expires');
variation('vetoed by committer with everyone voting');
email("+1 for Karl Candidate", "foo-dev");

- email("Voting is complete", "foo-dev");
45:

email ("PMC approval needed", "technology-pmc");

{variations in the script itself}

®e06 Mozilla Firefox (=)

e see runO swim committer election 6 objects 4 weeks old :

e see runO swim committer election for component of project & objects 2 months old

e see runO swim committer election is vetoed by committer and expires 2 objects 6 weeks old

e see runO swim committer election is vetoed by committer with everyone voting 2 objects 6 weeks old

e see runO swim committer election is vetoed by pmc 3 objects 4 weeks old

e see runO swim committer election where candidate changes email during election 1 objects 6 weeks old

e see runO swim committer election where candidate email is incorrect 2 objects 6 weeks old m
e see runO swim committer election where not enough votes were cast 1 objects 6 weeks old

e see runO swim committer election where voter changes vote 2 objects 6 weeks old

e see runO swim committer election with more paperwork required for individuals 5 objects 4 weeks old

e see runO swim committer election with only one possible component 3 objects 6 weeks old

e see runO swim committer election with reminders for tardy candidate paperwork 5 objects 6 weeks old

e see runO swim committer election with reminders for tardy pmc 4 objects 6 weeks old

e see runO swim committer election with reminders for tardy project lead forms 5 objects 6 weeks old

e see runO swim committer inspects project membership 1 objects 2 months old

e see runO swim company contact 2 objects 4 weeks old

e see runO swim company contact is terminated early by emo 2 objecis 4 weeks old)
e see runO swim company contact is vetoed by emo 2 objects 4 weeks old

If the variant script is missing, it can be in one of two states: either not yet written, or under
development but not yet completed. If the first case, the variation command always causes the
current script to fail, thus prompting the programmer to write those variant use case/test case

{list of scripts with the variant names}

scripts. In the second case, the variation command will succeed with a warning on a development

machine, but will fail in the deployment test. The goal here is to allow the programmer to
continue development (all written tests pass with green), but not allow her to deploy a

production system that is potentially flawed due to missing variations.

vetoed by committer with everyone voting

[variation |

{variation that is yellow indicating “not complete”}

The feel of the system is the same as large unit test suites: due to the heavy use of databases and
the need to reinitialize the databases to a known state for each test, the tests run somewhat more
slowly than code-only unit tests. However, the system is fast enough that every developer can
run all the tests before releasing new code.

We have found that the tests are easy to write and flow naturally from discussion with the
stakeholders. Our informal impression is that we spend about 10% of our time writing test
scripts as opposed to the 50% we used to spend when we wrote more detailed unit tests. We
attribute this difference to a difference in testing philosophy: these scripts are use cases rather
than unit tests. As use cases, they are demonstrating and documenting a particular long duration
transaction. Because the scripts and visualizations are easy to write and read, we get good
cooperation from the stakeholders and that leads to our lower effort. Additionally, because the
scripts are not unit tests, they are not rigorous tests of the APIs and thus do not carry adverse
properties that such tests entail, such as brittleness.

We do write scripts for both sunny and rainy day tests for the underlying business processes; we
understand that sunny day tests alone are completely insufficient for a robust system. However,
our rainy day tests are tests of the business logic, not of the underlying frameworks, PHP engine,
MySQL databases, or Apache web server — we accept the low risk of those untested failure
modes as appropriate to our mission. Our IT staff provides additional up-time testing of those
services as a supplement to the scripts and visualization we describe here.

Testing

We believe that testers benefit from exploratory testing and thus our scripting and visualization
system supports that exploration in two ways. First, the visualization works as a map of useful
program and database states. Testers can use the map to direct their exploration and testing — for
example, we find ourselves pointing at an area of a large diagram as we discuss working “over
there”.

Second, we designed the system to allow a user to switch from a passive examiner to an active
participant in testing with a single click. First, all state variables are stored in the databases: we
have a stateless web server without session states. Thus each step of the long running transaction

results in a particular database state (set of tables, rows, and values). As we all know, setting up
a particular complex state so as to replicate an interesting behavior or bug can be time consuming.
The scripts, however, do that set-up automatically just by their execution. Thus we've
implemented a feature where the user can click on any numbered step in a large diagram and be
switched to an interactive version of the system (i.e. the real system connected to a test
database), pre-populated with the database in the exact state that it was in at that step of the
script.

102 103
104
note)
105 106 Committer Provisioning for technology.foo
107 Election of Karl Candidate for the technology.foo project. edit]
E Voting successful.
E PMC approved.
108 109 = . .
CVS/SVN package information.
resu O Waiting for candidate paperwork.
110 111 112 113 Received NCRF; member; received MCQ
from committer_vote/legal_summary
\ LAY R RLIRAT})
webmaster
about
rovisionin
{user about to click on the gray step number 105}
en6 http://bjorn.local - My Foundation (=]

| | |
[HOME [COMMUNITY | MEMBERSHIP | COMMIMTERS = DOWNLONDS [

Log out

| | 1 -
RESOURCES | PROVECTS | ApOUTUS | SEARCH: et [T]

eclipse
Grace Legal
» Committers

* Newsgroups

Committer Provisioning for technology.foo
> Bugs Election of Karl Candidate for the technology.foo project. [edit]
> Adides Voting successful.
¥ PMC approved.
' CVSISVN package information.
Waiting for candidate paperwork.
Received NCRF; member; received MCQ

Project Reviews
Project Review conference call numbers:
619.555.8000 or 866.362.7064

passcode 83241#
Grace Legal Address
Phone: 555-1212 [edit]

Email: emolegal@example.com

Report bugs and request enhancements via bugzilla

Home | Privacy Policy | Terms of Use | Contact | Legal Copyright ©2007 The Eclipse Foundation. All Rights Reserved
|

{user is taken to interactive interface with database initialized to step 105}

Visualizing for Conversations

The scripting and visualization system facilitates conversations with our stakeholders (analysts
and users) in a number of ways. For example, the visualization of each script produces a unique
URL, so of course that URL can be emailed and IM'ed to someone else. Additionally, the
visualization is fairly generic HT ML with CSS, so it too can be saved and emailed as a
conversation reference.

®en06 Mozilla Firefox (@)
~
- -
committer election 4]
developeri candidate foo-dev pmcmember developer2 technology-pmc emolegal
0 34567 16 26 27 28
[stat | [_nominate [nominated | [wvote | [fresuln | N
12 8910111213
Project Committer - technology.foo
18 19 20 21 22 Nominate a new committer revert
.
23 Name: IKarI Candidate
[variation] .
24 Emai Icandidate@example.com
[variation] Mailing List
25 afling L |foo—dev@example.com
30 49 50 51 52 53 Rea_son_fo_r Karl is an excellent choice because
0 oe o Nomination: he's fixed bug 12345 and [161000]
1 day later and he answers his email promptly E‘S pmc |
54 e.g. approva
http://dev.eclipse.org/mhonarc/list n%%ded
His newsgroup bedside manner is prt
also exemplary
http://dev.ecli . / lists/
(P ev.eclipse.org/newslists/n E
—) e B
It)
save | explore :’
from project_committer/project_committer :’
46 47 48
55 66 64 56 57 58 59 60 65 67 68 69 70
2 hours later please pmc pmc
fill approved 67 approved 71
out
nerf &
63
72 737475
1 day later votes
76 77
revert
7879
-
Y
S RE 2

{general appearance of browser viewing a large swim diagram}

Each visualization has numbered steps which allow precise discussion even over the phone. We
have already experienced a number of conversations along the lines of "after 46 and before 49, we
need to send an email to the user informing them about X" or "here at 32, the dialog box is
confusing".

Visualizations also have exact renderings of the real interface panels with soft yellow highlighting
to show which fields and buttons have been modified and pressed. Because the state of the long
running transactions are immediately visible in the interface panels, and because the interface
panels are familiar to the users, we find that conversations with the users and stakeholders are
much easier than if we had used a more traditional "bubbles and arrows" state machine
description.

{ud Process - RequestQuote. java - BEA Workshop for WebLogic Platform 1 Q@Q
File Edit Source Refactor Mavigate Search Project Run Insert MWindow Help
L G- | BEFG- | &5 | @ =3 [| & Process o
[£ Package Explorer 52 = B [0 welcome %RequestQuote.java &3 1] LoanApproval.java s = O I properties 2 Annotations |
=R . 2 B E
i# requestquote e Sales Tax Calculation Needed? Property | value ~
+ :)5 FileQuote.java name RequestQuote
+- 55 PriceavailTransformations. java L notes This RequestQuate £
+ 7. RequestQuate.java 4 - = process
+- 55 RequestQuoteTransformation.j _ =3 % freeze on failure false
+- 55 Tutorialdoin.java ECH on sync Failure rollback
% convertAvailistToXML.xq i persistent always
% convertAvailXMLEoXMLObj. xq retry count 1)
% convertPriceListToXML.xq retry delay
&y FqnvertPriceXMLtoXMLObj.xq | stateless false
& join.xq [s
&2 RequestQuoteavailProcessor_z (=] Il Inl (5| < >
&:%(RequestQuoteavailProcessorGe B Get\P/rice Get A:;abilit B = e T =8
% RequestQuotepriceProcessor_r | Y E& DataPalette &3
% RequestQuotepriceProcessorGe «» SRS Variables ~
vk > ; _ ¥ . = G5 XML
K1,"',‘. 4| 1A > 4| 14 [#) Quote : QuoteDocument
= = 5 7 (
% Node Palette &2] ~ (=t = st [#] avail : AvaiRequestDocument
[E Client Request Request Price Request Availability [im; awvailList : XmlObjectList
Fl Client Respanse {#] availQuote : AvailQuoteDocument
!{i' Control Send [#] fileProperties : FileControlProperties
,;ij Control Send with Return Y g Y I_:a D iter_requestxML1 : WidgetRequestl
E-] Control Receive (2 4) = @ @ D price : PriceRequestDocument
(@) Perform J’—/ 54 [priceList : XmlObjectList
,:_J Decision Receive Price Receive Availability [#] priceQuote : PriceQuoteDocument
£, switch st D requestXML : QuoteRequestDocume
%9 while Do L= Non-XML
1 Do while Design | Source =l % Java
fut 7| taxRate : Float
9 For Each 11 o2 3 == E‘J
7 Paralel Problems | Tasks | ¢To Servers 23 3 Q = m | g)] Csntrols
TT Event Choice Server | Status | state + () availProcessor
53 Group = ‘-5 BEA WebLogic v9.2 Server [inteqi + j, fileQuate
.':':2 Transaction + (F LoanApp + L}/,; pricedAvailTransFormations
(& Finish + 3 RQ_EAR +-) priceProcessor
= + L“j taxCalculation 2l
< 2|18 =

{general appearance of a BPEL bubbles and arrows process description
courtesy http://e-docs.bea.com/wli/docs92/overview/}

As we mentioned earlier, the simulation and visualization system is also available in production
as a form of end-user documentation of the processes (long running transactions) being
automated. We invite our users to explore these visualizations through an "explore" link by each
action button in the user interface panels.

Committer Election for technology.foo

Candidate: Karl Candidate [votes]
Nominated By: Alex Developer

Karl is an excellent choice because he's fixed bug 12345 and [161000)
and he answers his email promptly e.g. http:..msg00028.html. His
newsgroup bedside manner is also exemplary (http:...sg341256.html).

Comments: |This is where you enter your
comments about the candidate and
you explain why you are voting +1,
0, or -1.

Vote: ¢ 44 confirm ¢ 0abstain ¢ -1 veto

vote I explore

{explore link next to vote button}

The explore link implements the usual context sensitive help text one would find in an
application, but it also provides additional context by showing the user all the use-cases
containing that same action.

Process Explorer

You are exploring the vote action of the committer_vote component.

Press vote to cast a vote. You can change your vote later with edit. This vote will be a
matter of public record. Please include a comment explaining the basis of your vote.

This behavior has been tested in the following use cases:

committer election

committer election for component of project

committer election is vetoed by committer and expires
committer election is vetoed by pmc

committer election where voter changes vote

committer election with more paperwork required for individuals
committer election with reminders for tardy candidate paperwork
committer election with reminders for tardy pmc

committer election with reminders for tardy project lead forms
simultaneous committer elections are nicely partitioned

This page offers a brief explaination of a specific portal action. This page also exposes the exact use
cases under which the portal's behavior for this action has been tested.

Should you follow the links above, you will see reports generated from the installed code applied to
pretend users. This provides exceptional transparency of our automated processes while protecting
personal information about our users. See Use Case Breakdown for more actions that can be
explored.

{process explorer text and list of use-cases}

We have found this additional context particularly useful because it helps explain the possible
branches in the long running transaction, not just the single action (e.g., "save") that the user is
about to perform. This is similar to the "see also" links in help systems, but because our list is
the complete list of use-cases that define the state space, we believe that it more useful than a set
of more general help messages.

Additionally, because we use the use-cases as the definition of, and the quality assurance tests of,
the application and then the users use the same use-cases as the documentation of the
application, both ourselves and our users "know" the application through the same set of use-
cases. This common set of vocabulary (use-cases) definitely facilitates conversations and reduces
common "programmer versus user" misunderstandings.

Open and Transparent

Because we are an organization dedicated to open source, we believe that both our code and our
processes should be open and transparent. This visualization tool supports that belief that
showing all states and sub-states of each long running transaction, even those that some other
organizations might consider privileged. For example, even through our portal provides an
interface panel for an Eclipse member company to change their contact people, a self-service
activity that one might assume directly updates the database, the use-cases show that such
changes require approval from Eclipse Foundation staff.

Pending Contact Changes
Company: Big Co
Role: Accounting Contact
From:
To: Hannah HardWorker
Approval: & +1 approve (" -1 veto
save | explore
\, J

{swim diagram revealing that organization contact changes require approval}

Compare this transparency to submitting a review to a website like Amazon: you are never sure
if your comments require approval by a human before posting, or perhaps are subject to
retroactive disapproval by a human, or are never considered by a human at all.

An example of where this transparency was useful is that EG, an Eclipse Committer and leader,
received an email from the portal and quickly emailed back to us "why am I receiving this?" We
pointed him to the url defining the committer election process and the particular email he received
and thus explained why he received that email. He examined the visualization and understood his
role in the process.

Benefits of Conversations

Our hope is that making the use-cases (the tests) available through "explore" links and our
visualization system will make them valuable to more people. It simplifies or avoids the need to
write extensive textual documentation due to the "a picture is worth a thousand words"
characteristics of the visualizations and the fact that the comprehensive tests cover the expected
user experiences.

Additionally, because the use-cases are both our documentation and our quality tests, we find
that there is additional incentive for keeping the tests up-to-date.

Implementation

Our system is implemented entirely in PHP 5 and MySQL 5 on top of an Apache 2.x web
server. It is operating system agnostic and has been run on Linux, Mac OS, and Windows XP
and Vista.

The system is stateless in the sense that each http request is processed without session state and
thus all object state information is saved in the database through direct SQL calls. Each interface
panel is defined by a separate PHP application object that processes method invocations and
returns HTML.

The live system uses AJAX calls from the interface panels through a single point of control,
dispatch.php, which verifies permissions, instantiates objects, invokes the appropriate action
method, and then returns the new HTML. On the client (web browser side), the AJAX call
replaces the old contents of the interface panel with the new returned HT ML.

We chose to use straight HTML (or rather, HTML + CSS) rather than an object transport format
such as JSON because we wanted all the rendering and layout to happen on the server-side. The
option of moving objects across the wire and then rendering them on the client-side would have
required that our visualization framework (which runs entirely on the server) exactly duplicate
that client-side rendering. Thus, for simplicity, we chose to transport HT ML and use the existing
rendering functions built into the browser.

All of the context information, such as the names and logins to the databases, are defined in a
single context object. This allows the simulator to easily replace all the live data with simulated
data, and the real clock time with simulated clock time, etc.

In the simulation and visualization system, we replace the single point of interaction,
dispatch.php, with a different control script, swim.php.

Running a Script

However, before describing swim.php, we'll describe an intermediate step: run.php.

e 06 Mozilla Firefox =) 20 0 Mozilla Firefox o
- ™ - M
complete asterisk example 7] [| complete asterisk example[/]
| |
Edit Mon Jul 09 14:16:32 EDT 2007 : developer1 :
Monday 2007-01-01 10:00:00 ! 12345 !
! start :

!
1: login('developer1') | Conference Call Manager ||
2: find(‘asterisk_manager’); | |
U Conference Number: 8889 |
Conference Call Manager PIN: !
4321 {
;‘ PIN Description Start Time Duratior Description: test c(:
foo project Monday, 2007-01-01 60 " Start Ti !
8888 12345 o 10:00:00 Eastern minutes &4l (Eaastelr'::)e: 20091
|
add] a conference Duration (mins): 90 |
learn about conference calls 1
subn|!
asterisk_manager/asterisk_manager 19 P 4 —
1 day later From astersk_managerasiol
222324 |
5) >
!
Conference Call Manager |
Conference Number: 8889 [revert] This diagram shows one hypothetical use of the L

PIN: [07678 y 1 portal. Each lane shows the use from the
a different user or gr
Description: | v

Start Time (Eastem): |2007-01-01 10:00:00

Duration (mins): |60 |

submit | explore —— —] <>

hin each period, the actual
2d by small numbers.

{comparison of linear run.php output (left) and columnar swim.php output (right)}

The run.php simulation and visualization is a simpler system than the swim.php simulation and
visualization. Run.php was our initial version and is still useful for certain kinds of debugging.
Run.php and swim.php use the same driver and differ only in the visualizer.

Our test scripts are just PHP, i.e., not some special testing language, and the test driver is
effectively a PHP interpreter written in PHP. It reads and eval's the test script line by line. The
test script is written as a sequence of PHP function calls to functions defined in our test
harness.php file. These harness.php functions form a domain specific language for testing long
running transactions and include: login as a particular user, enter some text in a form field, press a
form button, assert that a string does/does not appear on the page, assert that an email was/was
not sent, etc.

These harness.php functions simulate the AJAX actions that a user would trigger in using the
live version of the system. Thus application object performs its real business logic (against the
test databases) and then returns the appropriate HT ML. Run.php displays the test script line
numbers, the function being eval'd, and the resulting HTML all in a sequence on the output web
page. We added a little Javascript using HT ML entity ids and changing style sheets so that we
can annotate the top of the web page (rendered early) with the test results (determined late). We
also have a Javascript timer that catch the cases where the entire PHP system crashes so that we
can also annotate those web pages as having failed.

000 Mozilla Firefox (=] e o6 http://bjorn.local - Mozilla Firefox (@)

complete asterisk example [' complete asterisk example '

Edit Mon Jul 09 14:16:32 EDT 2007 Edit Mon Jul 09 14:25:55 EDT 2007
Monday 2007-01-01 10:00:00 Monday 2007-01-01 10:00:00
1: login('developer1'); 1: login('developer1');
2: find(‘'asterisk_manager’); 2: find(‘'asterisk_manager’);

Conference Call Manager Conference Call Manager

SZM PIN Description Start Time Duration ggﬁf PIN Description Start Time Duration

foo project Monday, 2007-01-01 60 " foo project Monday, 2007-01-01 "

8888 12345 call 10:00:00 Eastern minutes L 8889 12345 call 10:00:00 Eastern 2hours [edil]

add] a conference add] a conference

leamn about conference calls leamn about conference calls

from asterisk_manager/asterisk_manager from asterisk_manager/asterisk_manager

3: check('8888'); 3: check('8888');

4: check('60 minutes');
5: press(‘add');
Trouble: can'tfind "8888"

Conference Call Manager
Conference Number: 8889 [revert] 4: check('60 minutes');
PIN: [97678
Description: . X
escription: | Trouble: can'tfind "60 minutes"
Start Time (Eastem): [3007-01-01 10:00:00

Duration (mins): | go L]) 5: press(‘add'): 4
submit | explore = Ps 5 s 1
e —

{comparison of successful run (left) and failed run (right)}

Visualizing a Script

To produce our two-dimensional visualizations, we replace the "print resulting HTML" of the
run.php script with saving the resulting HTML from each step in an array indexed by simulated
user and time. We then post process this array into an HT ML table and print that table to the
web page at the end of the simulation.

The columns of the table are the personas involved in the long running transaction. Some of these
are the simulated users defined by the login(...) statements in the script. Other personas are
defined by the application logic itself: for example, the committer election process sends
notification emails to a number of interested parties who may or may not be represented by
login(...) statements in this particular script.

866 Mozilla Firefox =

committer election Pl
developer1 candidate foo-dev b developer2 hnology-pmc legal d: b
[_stat] [nominate] nominated vote
L= 910 11121 as started 2
1415 committer
19
[variation |
[variation |
T Gay ater pmo
4 summa 34 35 approval
= needed
|
successful —
= —————————————————)

{personas involved in committer election appear across top of output}

Obviously, the set of personas is not known until the script is complete and all the business logic
has been executed and thus the visualization cannot be produced incrementally.

Application objects can report the effective user when their action is better classified under some
other column. The best example of this is that emails show up under the "sent to" person, rather
than the user who was logged in at the time the email was sent.

ixed bug 12345 and (161000) and

ene6 Mozilla Firefox =
developer1 candidate foo-dev b-records webmaster
45 € 17 e.com (portal on behalf of Alex Developer)
start nominate nominated vote er status for Karl Candidate has started
; 910 1112 13 as started oo
- 14 15 committer Alex n th
tec

.html. His

* https://bugs.eclipse.org/bugs/show_bug
* https://bugs.eclipse.org/bugs/show_bug

4=12345
§=161000

The vote is being held via the Myl
or the votes to be

1 day later voting
e c s
summa rtal pa ust rej is email; yoi
tly nless you use the porta.
vote http://localhost/~karl/myfoundation
|
successfu If you have any questions, please do not hesitate to contact your project
lead, PMC member, or the EMO <emofeclipse.org>
cCcC—— B <

{email appears under sent-to persona}

We design our test data so that the personas are useful, e.g., "Polly Programmer" rather than
"personl". We could use real users from our real production databases, but we choose not to
due to privacy concerns.

The rows of the table are determined by the "advance" of time. We use an explicit advance(...)
statement in our scripts to advance simulated time. There are two good reasons for this: first, by
allowing many sequential events to appear in parallel in the table, we can have more compact
table and, in spite of larger and larger displays, screen real estate is always at a premium. Second,
it allows the script author to distinguish between important and accidental sequencing of events.
For example, if there are four people voting in a particular committer election, the order in which
they vote is not important and thus we show them as all voting in the same horizontal row.

developeri candidate foo-dev pmcmember

nominate | | nominated N

as started
committer

{one slice of time showing many things happening at once}

Because we use a real MySQL database for data and states, and because we use real DATETIME
columns in that database, our simulated time has to produce real DATETIME values for the
database at the same time it provides sortable values for the PHP code. We solved this problem
by assembling a SQL expression for "now", and then always using the MySQL database to
compare and resolve time variables.

Visualizing an Action

Each action in the script is summarized as either just a reference number, or as a reference number
and an icon. We defined a simple set of rules to determine when an action is interesting enough to
merit an icon for example, press() and enter() statements are interesting, whereas login() and
check() are not. The test script can override these rules with a show() statement, although we
have observed that two additional rules would eliminate our need for show() statement.

These are:

* A login()/find() pair with no subsequent press(), is interesting and thus earns an icon.
* The last button press in a time segment in a column is also interesting.

The icons contain a visual summary of the script statement, such as a button or an href link for a
press() statement, a yellow title for an email, or a purple note. Errors are, of course, red.
Application objects can provide an effective label if the default label is not sufficiently
descriptive. The entire HT ML result is available via a fly-out (implemented with Javascript).

membership

0 23
start)
1 Portal Account Request
| componen... |
23456 First Name: l
Last Name: I
78910111213 o
ogeniaton: [
14 15 16 Email Address: I
wrais 2+5: |
2122 from anonymous_forms/member_account_request

Ve
.

{a fly-out shows exact screen image}

The harness.php functions know the form and format of the standardized HT ML that our PHP
application objects return, enabling some simple pattern-based HT ML augmentation for
highlighting the modified form fields and/or pressed action buttons.

membership
0 23
accourt
1 request
23456

78910111213

14 15 16 Portal Account Request

17 18 19 20 First Name: |Charles
Last Name: |Ie Magne

2122 -~
Organization: | v
result A

Email Address

J/

’ Icharlemagne@example.com
Expected @, as in john@example.com

This diagram sho| | what is 22 + &: 7

MyFoundation po

perspective ofa d submit [explore

squares to show

screen. The left g from anonymous_forms/member_account_request

substantial elapsé

sequence of evensrerroroaoyorrerrrorroore /

{a fly-out includes highlighting of active areas}

Conclusion

Our system has been in continuous use for over six months now - not enough time to declare it
"the future of all things good and wonderful", but definitely enough time for us to do make some
initial conclusions.

The Eclipse Foundation staff has been happy with the results. Our team (the three of us) is
judged helpful, responsive, and productive. Other staff members want to add their processes
(long running transactions) to the portal, either with our assistance or on their own. The
Foundation staff has shown a definite preference for automation using this framework over the
other frameworks and tools available on our servers.

Perhaps the highest compliment we received was when one of our customers (SC) said that she
easily understood how everything worked because it "uses her words" in the interface panels and
documentation.

We believe that there have been two major reasons for our success to date: First, we've focused
on supporting conversations: conversations between developers, conversations between
developers and sysadmins; conversations between developers and users; and even conversations
between users and other users.

Second, we've worked at, and visualized, the right level of abstraction. Our abstractions are
simple enough to understand because we don't talk in computer terms such as "database
updates", "ajax form posts", or "user1"; instead we use the user's vocabulary, show the user's
interface panels, and use the names of real people and roles in our simulations. At the same time,
our abstractions are detailed enough to be believed because we are running the real code in our
simulations instead of bubbles and arrows diagrams. We respect the user's expertise without

dumbing down our system or forcing them to use our terminology.

References

[Rummler & Brache, 1995] Improving Performance: How to Manage the White Space in the
Organization Chart. Jossey-Bass, 1995. ISBN 0787900907.

